【文档说明】重庆市第八中学2024-2025学年高二上学期期中考试数学试题答案.pdf,共(8)页,753.051 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-d37fe5ec86c5bd1dc26301c7cdf8c323.html
以下为本文档部分文字说明:
第1页,共8页重庆八中2024—2025学年度(上)半期考试高二年级数学试题参考答案题号1234567891011答案ACBCDDCAABDABACD12.213.3314.261.A【解析】直线l的方向向量是(3,1)
e=,故倾斜角的正切值为13tan33==;又[0),,则l的倾斜角为6=.2.C【解析】因为sincos=,所以tan1=,所以2222sin(sincos)tan11sin(sincos)1111tansincostan++++====+++
.3.B【解析】设圆心(2)Caa,,则由所求的圆经过点()13,和点()40,得2222(21)(3)(24)aaaa−+−=−+,求得1a=,可得圆心为(21),,故半径为5.4.C【解析】正四棱台的侧面为等腰梯形,又正四棱台的上、下底面的边
长为4,6,高为3,所以侧面梯形的斜高为()2231h=+=,所以棱台的侧面积为114()4(46)24022Sabh=+=+=.5.D【解析】如图,由点G是ABC的重心,可得211121()()323333GBBGBABCAB
ACABABAC=−=−+=−−=−,结合GBABAC=+,可得23=,13=−,所以13+=.6.D【解析】对A选项,由//l,则l与和相交或平行或在面内,所以A选项错误;对B选项,当l=时,l
⊥且l且l,所以B选项错误;对C选项,当l时,l与,可以成任意角,所以C选项错误;对D选项,如图,易得l⊥,所以D选项正确;{#{QQABZYCAoggoAAIAAQhCEQXwCkEQkhCAAagGQEAAoAABCQNABAA=}#}第2页,共8页7.C【解
析】易知B在A监测范围内行驶的总距离为22122530402−=km,故B在A监测范围内行驶的总时长为2h.8.A【解析】椭圆2222:1(0)xyCabab+=的右顶点(,0)Aa,上顶点(0,)Bb,设()00Mxy,,
由2MBMA=可得()()00002axyxyb−−=−,,,解得233abM,,又由OPOM=,所以233abP,,将P代入椭圆方程22221xyab+=,得22222331abab+=,
即224199+=,解得355=或()355−舍,所以355=.9.ABD【解析】圆221:(1)(1)4Cxy+++=,其圆心1(11)C−−,,半径12r=,圆222:(3)(2)9Cxy−+−=,其圆心2(32)C,,半径23r=,对
于A,直线12CC的方程为112131yx++=++,即3410xy−−=,所以A正确;对于B,因为2212||(31)(21)5CC=+++=,当12||CC为圆的直径时,该圆面积最小,面积的最小值为2525()24=,所以B正确.对于C,因为12||5CC
=,且12235rr+=+=,可得1212||CCrr=+,所以圆1C与圆2C外切,所以两圆的公切线共有3条,所以C错误;对于D,当12MCCN,,,共线时MN取得最大值121210CCrr++=,所以D正确.10.AB【解析】对于A,由题意,2a=,2c=,故周长为422+,所以
A正确;对于B,当点P位于上下顶点时,12FPF为直角,所以B正确.对于C,当1260FPF=时,12232tan303FPFS==,所以C错误;对于D,若12FPF△是以P为顶点的等腰三角形,点P位于上下顶点;若12FPF△是以1F为
顶点的等腰三角形,则11222FPFF==,此时满足条件的点P有两个;同理,若12FPF△是以2F为顶点的等腰三角形,满足条件的点P有两个;故使得12FPF△为等腰三角形的点P共六个,所以D错误.{#
{QQABZYCAoggoAAIAAQhCEQXwCkEQkhCAAagGQEAAoAABCQNABAA=}#}第3页,共8页11.ACD【解析】对于A,当平面PAM⊥平面ABCM时,四棱锥PABCM
−的体积最大,此时四棱锥PABCM−的高为点D到AM的距离,直角梯形ABCM的面积为13()22ABCMBC+=,四棱锥PABCM−体积的最大值为13223224=,所以A正确;对于B,若AMPB⊥,又AMBM⊥,则AMPBM⊥平面,即AM
PM⊥,矛盾,所以B错误;对于C,由题,AMOP⊥,AMOE⊥,所以POE为二面角PAMC−−的平面角,在POE中,222123,,cos2224OPOEPEPEOPOEPOEOPOE+−=====,所以C正确;对于D,取AB中点E,连接EN,NC,EC,则//ENAP,12
ENPA=,且四边形AECM为平行四边形,//ECAM,ECAM=,所以NECPAM==,即,AP,AM不变,由余弦定理知CN定值,所以D正确.12.2【解析】将方程2240xyym+−+=整理,
可得22(2)4xym+−=−,则2422rmd=−===,解得2m=.13.33【解析】解:设2F是椭圆C的右焦点,连接2AF,2BF,由对称性可知:||||OAOB=,2||||OFOF=,则四边形2FAFB为平行四边形,则2||||AFBF=,即2||2||AFAF=,且2
3FAF=,因为22||||3||2AFAFAFa+==,则22||3AFa=,4||3AFa=在△2FAF中,由余弦定理可得2222222||||||2||||cosFFAFAFAFAFFAF=+−,即2224164142993223caaaa=+−,解
得2213ca=,所以椭圆C的离心率为33cea==.14.26【解析】在正四面体ABCD中,2ADBD==,1142DMCD==,60ADMBDM==,在,ADMBDM中,222111132cos4()222222AMBMBDDMBDDMBDM==
+−=+−=,取AB中点N,连接,MNDN,如图,,DNABMNAB⊥⊥,{#{QQABZYCAoggoAAIAAQhCEQXwCkEQkhCAAagGQEAAoAABCQNABAA=}#}第4页,共8页而3DN=,222133()122MNAMAN=−=−=,令正BCD△的中心为
1O,连接111,,AOBOMO,1BO的延长线交CD于点E,则E为CD中点,有12233BOBE==,122211113333232646BOMBEMBEDBCDSSSSBC=====,1322ABMSABMN==,显然1AO⊥平面BCD,正四面体ABCD的外接球球心
O在1AO上,连接BO,则BOAOR==,而222112264()33AOABBO=−=−=,在1RtBOO△中,222262()()33RR=−+,解得62R=,且134AOAO=,令点1O到平面MAB的距离为h,由11OABMABOMVV−−=得:11
1133ABMBOMShSAO=,即3326263h=,解得229h=,因此球O的球心O到平面MAB的距离d有1dAOhAO=,即3246dh==.15.(1)证明:由(1)(12)30mxmy++−−=,可得(2)(
3)0mxyxy−++−=,令202301xyxxyy−==+−==,所以直线l过定点(2,1)M;························5分(2)由(1)知,直线1l恒过定点(2,1)M,由题意可设直线1l的方程为1(2)(0)ykxk−=−,设直线1l与x轴,y
轴正半轴交点为A,B,令0x=,得12Byk=−;令0y=,得12Axk=−,所以△AOB面积111111|(12)(2)||(4)()4|(2(4)()4)4222Skkkkkk=−−=−+−+−−+=,当且仅当14kk−
=−,即12k=−时,△AOB面积最小值为4.·················13分16.(1)证明:由2cosaccB−=,则sinsin2sincosACCB−=,()sinsin2sincosBCC
CB+−=,即有sincoscossinsin2sincosBCBCCCB+−=sincoscossinsin2sincosBCBCCCB+−=,所以sincoscossinsinBCBCC−=,即sin()sinBCC−=,显然BC,
故02C,22BC−−,所以2BC=.·······························································································6分{#{QQABZYC
AoggoAAIAAQhCEQXwCkEQkhCAAagGQEAAoAABCQNABAA=}#}第5页,共8页(2)在BCD中,由正弦定理可得sinsinaBDBDCC=,6a=,即6sinsinBDBDCC=,所以6sin6sin3sinsin
2cosCCBDBDCCC===,··············10分因为ABC是锐角三角形,且2BC=,所以0,202,203,2CCC−解得64C,可得23cos22C,所以2332BD,所以线段BD长度的取值范围是(2332),.··
··································15分17.【解析】(1)①直线l的斜率不存在时,4AB=,不满足.②直线l的斜率存在时,设直线l的方程为:()10ykxk=+,由85|
|5AB=,2222451()()251k+=+,解得12k=,故直线1:12lyx=+.····································································
···························7分(2)①直线l的斜率不存在时,11||42422ABMESABx===,不满足.②直线l的斜率存在时,设直线l的方程为:()10ykxk=+,则22222134||
22()211kABkk+=−=++,M到直线l的距离22||1kkd=+,故22211342||||22211ABMkkSABdkk+==++2222(34)2(1)kkk+=+,············12分由352AB
MS=可得2222(34)352(1)2kkk+=+,化简得421942450kk−−=,即()()22319150kk−+=,解得3k=,故直线:31lyx=+.·········15分18.(1)证明:连结BD交AC于点F,连结EF,因为底面ABCD是
矩形,所以F为BD中点,因为//PD平面ACE,PD平面PBD,平面PBD平面ACEEF=,所以//PDEF,又因为F为BD中点,所以E为PB中点.····················································
·················4分{#{QQABZYCAoggoAAIAAQhCEQXwCkEQkhCAAagGQEAAoAABCQNABAA=}#}第6页,共8页(2)取CD的中点O,连结PO,FO,因为底面ABCD为矩形,所以BCCD⊥,因为
PCPD=,O为CD中点,所以POCD⊥,//OFBC,所以OFCD⊥,又因为平面PCD⊥平面ABCD,平面PCD平面ABCDCD=,PO平面PCD,POCD⊥,所以PO⊥平面ABCD,所以POOF⊥,所以OF,OC,OP两两垂直,······························
·····················6分如图,建立空间直角坐标系Oxyz−,则由题意可得:()1,1,0A−,()0,1,0C,()1,1,0B,()0,0,1P,111(,,)222E,()0,1,0D−,则(1,2,0)AC=−
,131(,,)222AE=−,(0,0,1)OP=,由上可知(0,0,1)OP=为平面ACD的一个法向量,····························8分设平面ACE的法向量为(,,)nxyz=,201310222ACnxyAEnxyz=−+==−++=,令
1y=,则2x=,1z=−,所以(2,1,1)n=−,所以222116cos,6||||6121(1)OPnOPnOPn−−====−++−,············11分所以平面EAC与平面ACD夹角的正弦值为306.·········
···················12分(3)由(2)(0,1,1)PD=−−,(1,1,1)AP=−,因为点M在棱PD上(含端点)所以设(0,1,1)(0,,)PMPD==−−=−−,[0,1]则(1,1,1
)(0,,)(1,1,1)AMAPPMAPPD=+=+=−+−−=−−−,设AM与平面ACE所成角为,则2222|2|2sin|cos,|||||6(1)(1)(1)6243AMnAMnAMn−====−+−+−−+,()22
26,336211=−+,所以直线AM与平面ACE所成角的正弦值的取值范围为26,33.····17分{#{QQABZYCAoggoAAIAAQhCEQXwCkEQkhCAAagGQEAAoAABCQN
ABAA=}#}第7页,共8页19.【解析】(1)直线22:220ABxy+−=,由14220yxxy=+−=,解得4133P,,直线()1:24MNyx=+,故102M,,直线11:82MPyx=−+,故()40H,.由22
4214xyxy=−+=化简得2540yy−=,解得6455N,,故直线7:52NPyx=−+,由2251724xyyx+=−+=化简得22570480xx−+=,故648525Qx=,解得85Qx=,故8355Q−,·········
······················································································6分(2)直线HQ与直线OP相互平行,证明如下:证明1//HBOP,再证明H,1B,Q三点共线即可.
①证明1//HBOP:由220ykxxy=+−=,解得221212kPkk++,,直线1AM的方程为(2)ykx=+,则()02Mk,,故直线2:22MPykxk=−+,故10Hk,,即10(1)10HBkkk−−==−,故
1//HBOP.···············································9分②证明H,1B,Q三点共线:设11()Nxy,,由221214xykxy=−+=,得2220144yykkk+−=,解得12414kyk=+,故212281
4kxk−=+;直线1HB的方程为1ykx=−,设1HB交C于122)(Qxy,,由22114ykxxy=−+=,得22(14)80kxkx+−=,解得22814kxk=+,故2224114kyk−=+;····
···························································································12分{#{QQABZYCA
oggoAAIAAQhCEQXwCkEQkhCAAagGQEAAoAABCQNABAA=}#}第8页,共8页12222222222412(41)(12)2(14)4411412828(12)2(14)8821
412PPPQkkyykkkkkkkkkkxxkkkkkkk−−−−+−+−−++====−+−++−−++,23222122232212422(12)(14)444411412282(14)(12)(14)882882141
2PPPNkkyykkkkkkkkkkkkkxxkkkkkkkkkk−−+−+−++−−++=====−−−+−+−−++−−++,所以1PPQNkk=,即N,P,1Q三点共线,又有直线NP交C于点Q,故Q与1Q重合,即H
,1B,Q三点共线.由①②可知//HQOP.·······························································································17分{#{QQABZYCAoggoA
AIAAQhCEQXwCkEQkhCAAagGQEAAoAABCQNABAA=}#}