【文档说明】2023届福建省南平市2023届高中毕业班第三次质量检测 数学答案.pdf,共(9)页,394.959 KB,由管理员店铺上传
转载请保留链接:https://www.doc5u.com/view-d2dd05095227fa51077f203205e6ff6e.html
以下为本文档部分文字说明:
数学参考答案第1页(共8页)南平市2023届高中毕业班第三次质量检测数学参考答案及评分标准说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后
继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.只给整数分数.选择题和填空题不给中间分.一、选择题:
本题考查基础知识和基本运算,每小题5分,满分40分。1.C2.B3.C4.C5.D6.A7.B8.A二、选择题:本大题共4小题,每小题5分,满分20分.在每小题给出的四个选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。9.BD10.ACD
11.AC12.BCD三、填空题:本题考查基础知识和基本运算,每小题5分,满分20分。13.2014.(1,1)(答案不唯一)15.2ee0xy16.82π四、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步
骤。17.(10分)解:(1)依题意,{}nnaT是以1为首项,2为公差的等差数列,所以11221nnannT(),............................................................................
......................................................................................2分即(21)nnnTa,从而当2n≥时,有11(23)nnnTa
,.......................................................3分两式相除得,12123nnnnaana,由已知得0nT,从而0na,所以当2n≥时,121123nnna,即12321nna
n,......................................................................5分所以2121nnan.........................
...........................................................................................................6分(2)设{}23nTn的前n项和为nS,由(1)得,21nnaT
n,所以121nTn,..................7分故123(21)(23)nTnnn111()22123nn,....................................................................
..8分数学参考答案第2页(共8页)所以1111111111()()23557212323233(23)nnSnnnn.................10分18.(本小题满分12分)解:(1)依题意得sinsincoscossincosBCCBCC,.
...............................................................................................2分所以sinsinsincoscossincoscosBCBCBCBC,所以s
incos0BCBC,.......................................................................................................4分所以tan1BC即ta
n1A,....................................................................................................5分又因为0π
A,所以π4A.................................................................................................
.............6分(2)由11π2sin224ABCSabc△,............................................................
.......................................7分所以24abc.由余弦定理得222π2cos4abcbc,..................................................
.............................................8分即2222abcbc,所以2222128bcbcbc,即22221228bcbcbcbc≥,................
...............................10分所以822bc≥,当且仅当bc时取“等号”,.........................................................
.................11分而1π2sin244ABCSbcbc△,故min28224244ABCS△....................................12分19.(12分)数学参考答案第
3页(共8页)(1)证明:作SO平面ABC,垂直为O,则SBO为SB与平面ABC所成角,所以3SBO,在RtSBO△中,由4SB可得2BO,23SO..................
.......................1分因为SO平面ABC,所以SOCO,所以在RtSCO△中,由26SC,23SO,可得23CO,..............................................2分在BCO△中,由4BC,23C
O,2BO,可得222BCCOBO,从而COBO,且6BCO,.....................................................................
...................................................................3分在ACO△中,4AC,6ACO,所以ACOBCO△△,从而2AOBO,所以4AOBO,又4AB,所以点O必在
AB上,且O为AB的中点...............................................................................................................
............................................4分因为SO平面ABC,所以SOAB,又ABCO,SOCOO,,SOCO平面SCO,所以AB平面SCO,从而SCAB...............
..................................................................................6分(2)解:以点O为坐标原点,,,OCOBOS所在直线分别为zyx,,轴建立如图所示的空间直角坐标系xyzO,..........
.................................................................................................................7分(0,2,0)B,(23,0,0
)C,(0,0,23)S,(3,3,0)D,则133()(,,3)222OMOSOD,即33(,,3)22M...................................................8分37(,,3)22BM
,(23,2,0)BC,设平面BCM的法向量为),,(zyxn,由,,00BCnBMn得.0232032723yxzyx,取3y,可得)4,3,1(n,.................
.....................................................................................10分取平面SBC的一个法向量)001(
,,m,....................................................................................11分设所求的角为,则105|201||||||||,cos|co
snmnmnm,因此所求平面SBC数学参考答案第4页(共8页)与平面SAD夹角的余弦值为105...........................................................................................
..........12分20.(12分)解:(1)因为散点,1,2,,6iivi集中在一条直线附近,设回归直线方程为ˆˆˆbva,由4.1,3.05v,则1222175.364.13.051ˆ101.464.12niiiniivnvb
vnv,...........................................2分所以1ˆˆ3.054.112abv,...........................................................
..........................................4分所以变量关于v的回归方程为1ˆ12v,令ln,ln,vxy所以1lnln1,2yx所以12ˆeyx,................................
................................6分综上,y关于x的回归方程为12eyx.(2)由1212eeee,97yxxxx,解得4981x≤≤,所以50,60,6
5,72x,所以B,C,D,E为“热门套票”,................................................................................................8分则三人中购买“热门套票”的人数X服
从超几何分布,X的可能取值为1,2,3.1221342424333666CCCCC131(1),(2)(3)C5C55,CPXPXPX..............................
.......................10分所以X的分布列为:131()1232555EX............................................
...................................................12分X123P153515数学参考答案第5页(共8页)21.(12分)解:(1)由题意得2,2()()1,caacac...........................
.......................................................................................................2分解得2a,1c,
所以1b........................................................................................................3分椭圆C的方程为
2212xy..........................................................................................................
...4分(2)依题意得直线2l的方程为1x.设直线1l的方程为1xmy,1122(,y),(,)PxQxy.由2212xmyxy,=1,得22(2)210mymy...........
.......................................................................................................5分12222myym,12212yym,................
..........................................................................6分所以12122yymyy.1AP的方程为:11(2)2yyxx,由111
(2)2xyyxx,,解得11(12)2Myyx..................................................................7分2AQ的方程为:22(2)2yyxx,由221,
(2),2xyyxx解得22(12)2Nyyx..................................................................8分数学参考答案第6页(共8页)11111222212
21(12)(12)||||2(2)21(2)||||(12)(21)22yFNAFSxyxySyxFMAFx........................................10分121121212112212
21()(12)(m12)(12)21(m12)(12)()(12)2yyyyymyyyyymyyyyyy................................11分1212
12123+22322322322322yyyyyyyy322.............................................................................................
.............................................12分22.(12分)解:(1)2()6exfxa,..........................................................................
......................................1分当0a≥时,()0fx,fx单调递增,无极值,........................................................................2分当0a时,由(
)0fx,得1ln()26ax,...................................................................................3分当1(0,ln())26ax时,'()0fx,函数
()fx单调递减;当1(ln(),)26ax时,'()0fx,函数()fx单调递增;所以当1ln()26ax时,函数()fx的极小值为ln()226aaa,无极大值..........................4分(2)由(1)得ln
()3226aaa,令()ln()226aaaa0a,则1'()ln()26aa,由'()0a,得6a,数学参考答案第7页(共8页)当(,6)a时,'()0a,函数()a单调递增;当(6,0)a时
,'()0a,函数()a单调递减;所以当且仅当6a时,函数()a的最大值为3,故由ln()3226aaa,得6a............................................................................
...................5分不妨设1x2x,当x(0,)时,2'()6(e1)0xfx,fx单调递增;当x(0,)时,2'()660gxxx,gx单调递增;所以1212|(
)()||()()|fxfxgxgx≥,可化成2121()()()()fxfxgxgx≥,..............6分即2211()()()()fxgxfxgx≥,对10x2x恒成立,令232()()()3e236xhxfxgxxxx
,x(0,),则()hx在(0,)上单调递增,所以22'()6e6660xhxxx在(0,)上恒成立,........................................................7分设22()e1xuxxx,则(0)0u
,2'()2e2xuxx,'(0)2u,当2≤时,因为2''()4e2xux在(0,)上单调递增;所以''()''(0)420uxu≥≥,所以2'()2e2xuxx在(0,)上单调递
增;所以'()'(0)20uxu≥≥,所以22()e1xuxxx在(0,)上单调递增;所以()(0)0uxu≥,数学参考答案第8页(共8页)所以'()6()0hxux≥在(0,)
上恒成立..................................................................................10分当2时,令2''()4e20xux,得1ln22x,当1(0,l
n)22x时,''()0ux,所以当1(0,ln)22x时函数'()ux单调递减,'()'(0)0uxu,所以当1(0,ln)22x时函数()ux单调递减,()(0)=0uxu,所以当1(0,
ln)22x时'()6()0hxux,矛盾.综上所述,2≤...............................................................................
................................................12分获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com