【文档说明】高中数学人教版必修2教案:2.1.2 空间直线与直线之间的位置关系 (系列四)含答案【高考】.doc,共(6)页,185.500 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-d175073d2ea5c994fbec2a09060adcde.html
以下为本文档部分文字说明:
1空间中直线与直线之间的位置关系【教学目标】1.正确理解空间中直线与直线的位置关系,特别是两直线的异面关系.2.以公理4和等角定理为基础,正确理解两异面直线所成角的概念以及它们的应用.3.进一步培养学生的空间想象能力,以及有根有据、实事求是等严肃的科学态度和品质.【重点难点】两直线异面的判定方
法,以及两异面直线所成角的求法.【课时安排】1课时【教学过程】导入新课观察长方体(图1),你能发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与线段C′C所在直线的位置关系如何?图1推进新课新知探
究2提出问题①什么叫做异面直线?②总结空间中直线与直线的位置关系.③两异面直线的画法.④在同一平面内,如果两直线都与第三条直线平行,那么这两条直线互相平行.在空间这个结论成立吗?⑤什么是空间等角定理?⑥什么
叫做两异面直线所成的角?⑦什么叫做两条直线互相垂直?活动:先让学生动手做题,再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:①异面直线是指不同在任何一个平面内的两条直线.它是以否定的形
式给出的,以否定形式给出的问题一般用反证法证明.②空间两条直线的位置关系有且只有三种.结合长方体模型(图1),引导学生得出空间的两条直线的三种位置关系:.,:;,:;,:没有公共点不同在任何
一个平面内异面直线没有公共点同一平面内平行直线有且只有一个公共点同一平面内相交直线共面直线③教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如图2.图2④组织学生思考:长方体ABCD—A′B′
C′D′中,如图1,BB′∥AA′,DD′∥AA′,BB′与DD′平行吗?通过观察得出结论:BB′与DD′平行.再联系其他相应实例归纳出公理4.公理4:平行于同一条直线的两条直线互相平行.符号表示为:a∥b,b∥ca∥c.3强调:公理4实质上是说平行具有传递性,在
平面、空间这个性质都适用.公理4是:判断空间两条直线平行的依据,不必证明,可直接应用.⑤等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.⑥怎么定义两条异面直线所成的角呢?能否转化为用共面直线所成
的角来表示呢?生:可以把异面直线所成角转化为平面内两直线所成角来表示.如图3,异面直线a、b,在空间中任取一点O,过点O分别引a′∥a,b′∥b,则a′,b′所成的锐角(或直角)叫做两条异面直线所成的角.图3针对
这个定义,我们来思考两个问题.问题1:这样定义两条异面直线所成的角,是否合理?对空间中的任一点O有无限制条件?答:在这个定义中,空间中的一点是任意取的.若在空间中,再取一点O′(图4),过点O′作a″∥a,b″∥b,根据等角定理,a″与b″所成的锐角(或直
角)和a′与b′所成的锐角(或直角)相等,即过空间任意一点引两条直线分别平行于两条异面直线,它们所成的锐角(或直角)都是相等的,值是唯一的、确定的,而与所取的点位置无关,这表明这样定义两条异面直线所成角的合理性.注意:有时,为了方便,可将点O取
在a或b上(如图3).图4问题2:这个定义与平面内两相交直线所成角是否矛盾?答:没有矛盾.当a、b相交时,此定义仍适用,表明此定义与平面内两相交直线所成角的概念没有矛盾,是相交直线所成角概念的推广.⑦在定义中,两条异面直线所成角的范围是(0°,
90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.例如,正方体上的任一条棱和不平行于它的八条棱都是相互垂直的,其中有的和这条棱相交,有的和这条棱异面(图5).4图5应用示例例1如图6,空间四边形ABCD中,E、F、G、H
分别是AB、BC、CD、DA的中点.图6求证:四边形EFGH是平行四边形.证明:连接EH,因为EH是△ABD的中位线,所以EH∥BD,且EH=BD21.同理,FG∥BD,且FG=BD21.所以EH∥FG,且EH=FG.所以四边形E
FGH为平行四边形.变式训练1.如图6,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点且AC=BD.求证:四边形EFGH是菱形.证明:连接EH,因为EH是△ABD的中位线,所以EH∥BD,且EH=B
D21.同理,FG∥BD,EF∥AC,且FG=BD21,EF=AC21.所以EH∥FG,且EH=FG.所以四边形EFGH为平行四边形.因为AC=BD,所以EF=EH.所以四边形EFGH为菱形.2.如图6,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点且AC=BD,AC
⊥BD.求证:四边形EFGH是正方形.证明:连接EH,因为EH是△ABD的中位线,5所以EH∥BD,且EH=BD21.同理,FG∥BD,EF∥AC,且FG=BD21,EF=AC21.所以EH∥FG,且EH=FG.所以
四边形EFGH为平行四边形.因为AC=BD,所以EF=EH.因为FG∥BD,EF∥AC,所以∠FEH为两异面直线AC与BD所成的角.又因为AC⊥BD,所以EF⊥EH.所以四边形EFGH为正方形.点评:“见中点找中点”构造三角形
的中位线是证明平行常用的方法.例2如图7,已知正方体ABCD—A′B′C′D′.图7(1)哪些棱所在直线与直线BA′是异面直线?(2)直线BA′和CC′的夹角是多少?(3)哪些棱所在直线与直线AA′垂直?解:(1)由异面直线的定义可知,棱AD、DC、CC′、DD′、D′C′、B′C
′所在直线分别与BA′是异面直线.(2)由BB′∥CC′可知,∠B′BA′是异面直线BA′和CC′的夹角,∠B′BA′=45°,所以直线BA′和CC′的夹角为45°.(3)直线AB、BC、CD、DA、A′B′、B′C′、C′D′、D′A′分别与直线AA′垂直.变式训
练如图8,已知正方体ABCD—A′B′C′D′.6图8(1)求异面直线BC′与A′B′所成的角的度数;(2)求异面直线CD′和BC′所成的角的度数.解:(1)由A′B′∥C′D′可知,∠BC′D′是异面直线BC′与A′B′所成的角,∵BC′⊥C′D′,∴异面直线BC′与A′B′所
成的角的度数为90°.(2)连接AD′,AC,由AD′∥BC′可知,∠AD′C是异面直线CD′和BC′所成的角,∵△AD′C是等边三角形.∴∠AD′C=60°,即异面直线CD′和BC′所成的角的度数为6
0°.点评:“平移法”是求两异面直线所成角的基本方法.拓展提升图9是一个正方体的展开图,在原正方体中,有下列命题:图9①AB与CD所在直线垂直;②CD与EF所在直线平行;③AB与MN所在直线成60°角;④MN与EF所
在直线异面.其中正确命题的序号是()A.①③B.①④C.②③D.③④答案:D课堂小结本节学习了空间两直线的三种位置关系:平行、相交、异面,其中异面关系是重点和难点.为了准确理解两异面直线所成角的概念,我们学习了公理4和等角定
理.作业课本习题2.1A组3、4.