【文档说明】黑龙江省大庆市2020届高三第三次高考模拟考试数学(理)试题参考答案.docx,共(11)页,414.308 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-d13a80e538dd3d8c799e99b57a8fac04.html
以下为本文档部分文字说明:
2020大庆三模数学理科参考答案一、选择题ABACCBDDCACD13.214.115.32316,1103217.解(Ⅰ)因为12nnSa+=−,①当2n时,12nnSa−=−,②...............................2分由①-②得1nnnaaa+=−,即12n
naa+=,............................................4分当1n=时,2124aa=+=,21422aa==,所以数列na为等比数列,其首项为12a=,公比为2,所以112nnnaaq−==;.......................
...........................................6分(Ⅱ)由(Ⅰ)得,22log121nnban=+=+,所以()2nTnn=+,....................
....................................8分所以()11111222kTkkkk==−++,11111111111...2324112nkkTnnnn==−+−++−+−
−++........10分31114212nn=−+++因为02111+++nn所以4311=nkkT............................12分18
.解(1)证明:连接AC,BD交点为O,∵四边形ABCD为正方形,∴ACBD⊥∵PBPD=,OBOD=,∴BDOP⊥,...........................................................2分又∵OPACO
=,∴BDPAC⊥面又BDPAC面,∴PACABCD⊥面面...........................................................4分(2)方法1:∵PACABCD⊥面面,过点
P做PEAC⊥,垂足为E∴ABCDPE⊥面∵PA与底面ABCD所成的角为030,∴030PAC=,...............................................................6分又PAPC⊥,设2PC=,则23,3,3,4,2
2APPEAEACAD=====过F做FE垂直于AB,垂足为F,则AF=223如图所示,以A为坐标原点,,ABAD为x,y轴的正方向建立空间直角坐标系Axyz−()()()()32320,0,0,22,0,0,22,22,0,0,22,0,,,322ABCDP..........8
分设面PBC法向量为()1,,nxyz=,()220,22,0,,,322BCCP==−−1100nBCnCP==,∴220223022yxyz=+−=,1,0,6zyx===令则,∴()16,0,1n=
......................................................................9分同理PCD面的法向量()20,6,1n=,..................................................
..................10分1212121cos,7nnnnnn==.............................................................
.......11分∴二面角BPCD−−的正弦值734....................................................................12分(2)方法2∵PAC
ABCD⊥面面,过点P做PEAC⊥,垂足为E∴ABCDPE⊥面∵PA与底面ABCD所成的角为030,∴030PAC=,.........................9分设AB=a,则,AB=BC=CD=DA=a,AC=a2,由PAPC⊥,030PAC
=得AP=a26,PE=a46,AE=a423,过E做EF垂直AB,垂足为F,则AF=a43,如图所示,以A为坐标原点,,ABAD为x,y轴的正方向建立空间直角坐标系Axyz−所以可得:A(0,0,0),B(a,0,0)C(a,a,0),D(0,a.0),P(a43,a43
,a46),....................................................................8分)46,4,4(aaaCP−−=,=BC(0,a.0),DC=(a,0,
0)设面PBC法向量为()1,,nxyz=,1100nBCnCP==,=+−−=046440zayaxaay,令z=1.则===106zyx,即)1,0,6(1=n,.................
...................................................9分设PCD面的法向量),,(2222zyxn=,则=•=•0022CPnDCn,=+−−=0464402222zayaxaa
x,令z=1.则===160222zyx,)1,6,0(2=n,....................................................................10分(直接书写:同理可得)1,6,0(2=n,本
次考试不扣此步骤分)所以71,cos212121=•=nnnnnn,..................................................................11分则二面角BPCD−−的正弦值为734..........................
...........................................12分19.解(1)设零件经A,B,C三道工序加工合格的事件分别记为A,B,C,则()PAp=,()23PB=,()34PC=,()1PAp=−,()13P
B=,()14PC=.设事件D为“生产一个零件为二级品”,由已知A,B,C是相互独立事件,则()()PDPABCABCABC=++()()()PABCPABCPABC=++()2313211343434ppp=−++
6111224p−==,.............................................2分所以12p=...........................................
...4分(2)X的可能取值为200,100,50−,...........................................5分()12312002344PX===,()1110024PX==,()111714204542PX=
==−−−,....................................................8分则X的分布列为X200100-50P141124724..........................10分所以1117325()
20010050424244EX=+−=........................12分20.解:(1)当0m=时,()xfxxe=−,()(1)xxxfxexexe=−−=−+------------------------2分所
以(1)2kfe==−,因为(1)fe=−所以切线方程为2(1)yeex+=−−,整理得:20exye+−=-----------------------4分(2)()4xmxex−+,因为0xe,所以4xxmxe++(0x)恒成立设4(
)xxhxxe+=+,则2(4)33()11xxxxxxexexexhxeee−+−−−−=+=+=---------6分设()3,xsxex=−−则()1xsxe=−0(0x).所以()sx在(0,)+上单调递增,又05.44817.
429)23(23−−=es,03352945.5335)35(35−−−−=es,所以存在)35,23(0x使得0()0sx=,当0(0,)xx时,()0sx,即0)(xh;当0(,)xx+时,()0sx即0)(xh.所以()hx在0(0,)x上单调递
减,0(,)x+上单调递增.所以00min004()()xxhxhxxe+==+.----------8分因为00000()0,30,3.xxsxexex=−−==+所以000min000000441()()133xxxhxhxxxxxxe++==+=+=++++,)35,23(0x
------------10分设311)(+++=xxxg,当)35,23(x时,0)3(11)(2+−=xxg,所以)(xg在)35,23(上单调递增.则)35()()23(gxgg,即342121)(18492xg.所以3)(20xh因为mZ,所以2m,
所以m的最大值为2.----------------------------------12分21.方法一解(1)由题有2a=,12cea==.∴1c=,.....................................................2分∴2223bac=−=.∴椭圆方程
为22143xy+=...........................................................................4分(2)设l:1xmy=+,将其与曲线C的方程联立,得()223
1412myy++=.即()2234690mymy++−=...........................................................................................6分设()12,Mxy,()22,Nxy,则122634m
yym+=−+,122934yym=−+2222226912(1)14343434mmMNmmmm−−+=+−=+++............................................8分将直线FT:()1ymx=−−与4x=联立,得()4,3Tm−∴22
9931TFmm=+=+..........................................................................................9分∴2222||1341131||4411TFmmMNmm+==++++
......................................................10分设21tm=+.显然1t.构造()()||1131||4TFftttMNt==+.()211304ftt
=−在)1,t+上恒成立,所以()yft=在)1,+上单调递增.所以||1131||4FTtMNt=+,当且仅当1t=,即0m=时取“=”所以||||TFMN的取值范围是[1,)+................
............11分当||||TFMN取得最小值1时,0m=,此时直线l的方程为1x=......................................12分(注:1.如果按函数1yxx=+的性质求最值可
以不扣分;2.若直线方程按斜率是否存在讨论,则可以根据步骤相应给分.)21.方法二解(1)由题有2a=,12cea==.∴1c=,...................................................2分∴2223bac=−=.∴椭圆方程为221
43xy+=...........................................................................4分(2)方法1:设l:1xmy=+,将其与曲线C的方程联立,
得()2231412myy++=.即()2234690mymy++−=...........................................................................................6
分设()12,Mxy,()22,Nxy,则122634myym+=−+,122934yym=−+2222226912(1)14343434mmMNmmmm−−+=+−=+++...........................................
.8分将直线FT:()1ymx=−−与4x=联立,得()4,3Tm−∴229931TFmm=+=+..............................................................................
............9分∴2222||1341131||4411TFmmMNmm+==++++......................................................10分设21tm=+.显然1
t.构造()()||1131||4TFftttMNt==+.()211304ftt=−在)1,t+上恒成立,所以()yft=在)1,+上单调递增.所以||1131||4FTtMN
t=+,当且仅当1t=,即0m=时取“=”所以||||TFMN的取值范围是[1,)+.当||||TFMN取得最小值1时,0m=,此时直线l的方程为1x=......................
................12分(注:1.如果按函数1yxx=+的性质求最值可以不扣分;2.若直线方程按斜率是否存在讨论,则可以根据步骤相应给分.)(2)方法2:当l的斜率不存在时,易得1,322===MNTFabMN.......................6分当l
斜率存在时,可设)1(:−=xkyl设()12,Mxy,()22,Nxy由=+−=134)1(22yxxky得01248)43(2222=−+−+kxkxk,...........................8分
2221222143124,438kkxxkkxx+−=+=+22212212221222122143)1(12)4))((1())(1()()(kkxxxxkxxkyyxxMN++=−++=−+=−+−=.....
......................9分依题意可知0k,则有直线TF:)1(1−−=xky,又x=4,则)3,4(kT−所以kkTF213+=,...........................10分则得1)1(9641
1641)43(41144322422222+++=++=++=kkkkkkkkMNTF......................11分综上可知,||||TFMN最小值为1,此时直线l的方程为1x=....................................
..12分(2)方法3:当l的斜率不存在时,易得1,322===MNTFabMN...........................6分当l斜率存在时,可设)1(:−=xkyl设()12,Mxy,()22,Nxy由=+−=134)1(22yxxky得01248)43(2222=−+−
+kxkxk,...........................8分2221222143124,438kkxxkkxx+−=+=+22212212221222122143)1(12)4))((1())(1()()(kkxxxxkxxkyyxxMN++=−++=−+=−+−
=...........................9分依题意可知0k,则有直线TF:)1(1−−=xky,又x=4,则)3,4(kT−kkTF213+=,...........................10分则得22242222211)43(41)
43(411443kkkkkkkkMNTF++=++=++=设1,112=+ttk,则有61941++=ttMNTF,设0)(,1,19)(,619)(2−=++=tftttftttf当t=1时,f(t)=16,则t>1时,f(t)>16,则16194
1++=ttMNTF...........................11分综上可知,||||TFMN最小值为1,此时直线l的方程为1x=......................................12
分22.解(1)曲线C的普通方程为622=+yx...............................................2分因为2)3cos(=+,所以04sin3cos=−−所以直线l的直角坐标方程为043=
−−yx...................................4分(2)点P的坐标为(4,0)设直线m的参数方程为=+=sincos4tytx(t为参数,为倾斜角)..........6分联立直线m与曲线C的方程得:010cos82=
++tt设A、B对应的参数分别为2,1tt,则−==−=+040cos6410cos822121tttt所以34cos82121==+=+=+ttttPBPA...............................
....................8分6560,23cos或的倾斜角为故直线且满足得m=........................................................
.........................10分23.解:(1)当1a=−时,()2,1,112,11,2,1.xfxxxxxx−−=+−−=−....................2分由1)(−xf,得21−x.故不等式1)(−xf的解集为1,2
−+.......................4分(2)因为“xR,()21fxa+”为假命题,所以“xR,12)(+axf”为真命题,..........................................................6分因为
1)()1(1)(−=+−++−+=aaxxaxxxf所以1)(max−=axf,.....................................................................
.............................8分则121+−aa,所以22)12()1(+−aa,即220aa+,解得02−a,即a的取值范围为2,0−......................................10分