【文档说明】四川省巴中市南江县小河职业中学2020-2021学年高三下学期期末数学试题 含答案.docx,共(10)页,264.753 KB,由管理员店铺上传
转载请保留链接:https://www.doc5u.com/view-cab401ffaa2630ac2d07a3840db643b8.html
以下为本文档部分文字说明:
四川省南江县小河职业中学2020-2021学年高三下学期期末考试数学试题一、选择题(每题4分,共60分)1.设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()A.–4B.–2C.2D.42.
对于任意两个数(),,*xyxyN,定义某种运算“◎”如下:①当2,*2,*xmmNynnN==或21,*21,*xmmNynnN=−=−时,xyxy=+◎;②当2,*21,*xmmNynnN==−时
,xyxy=◎.则集合A=(),10xyxy=◎的子集个数是()A.214个B.213个C.211个D.27个3.已知甲、乙两个城市相距120千米,小王开汽车以100千米/时匀速从甲城市驶往乙城市,到达乙城市后停留1小时,
再以80千米/时匀速返回甲城市.汽车从甲城市出发时,时间x(小时)记为0,在这辆汽车从甲城市出发至返回到甲城市的这段时间内,该汽车离甲城市的距离y(千米)表示成时间x(小时)的函数为()A100,01.280,1.2xxy
xx=B.100,01.212080,1.2xxyxx=−C.100,01.2120,1.22.212080,2.23.7xxyxxx=−D.100,01.2120,1.22.229680,2.23.7xxyxxx=
−4.魏晋时期,我国古代数学家刘徽在《九章算术注》中提出了割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”.割圆术可以视为将一个圆内接正n边形等分成n个等腰三角形(如图所示),当n
变得很大时,等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,可得到sin3的近似值为()(取近似值3.14).A.30B.60C.90D.1205.若点22sin,cos33在角的终边上,则sin
的值为A.12−B.32−C.12D.326.过点()2,2M的直线与圆()2215xy+−=相切,且与直线50mxy++=垂直,则m的值为()A.2B.12C.-2D.12−7.从盛满20L纯酒精的容器里倒出1L酒精,然后用水填满,这样继续下去,
若倒第k次(1)k时共倒出纯酒精xL,倒第(1)+k次时共倒出纯酒精()fxL,则()fx的表达式为()A.19()20fxx=B.19()120fxx=+C.1()20fxx=D.1()120fxx=+8.已知向量a与b夹角为3,且1a=,23ab−=,则b=()A.3B.2C.1D.329
.已知(1+2x)n的展开式中第3项与第9项的二项式系数相等,则所有偶数项的二项式系数之和为()A.211B.210C.29D.2810.定义在R上的函数()fx既是奇函数,又是周期函数,T是它的一个周期,则方程()0fx=在闭区间2,2TT−上的实数根的个数可能是()
A.1B.5C.9D.1211.已知是两条不同直线,是两个不同平面,则下列命题正确的是A.若垂直于同一平面,则与平行B.若平行于同一平面,则与平行C.若不平行,则在内不存在与平行的直线D.若不平行,则与不可能垂直于同一平面12.为了给地球减负,提高资源利用率,全国掀
起了垃圾分类的热潮,垃圾分类已经成为新时尚,假设某市2020年全年用于垃圾分类的资金为2000万元,在此基础上,每年的投入资金比上一年增长20%,则该市全年用于垃圾分类的资金开始超过1亿元的年份是()(参考数据:log101.2≈0.08,log105≈0.70)A.2030年B.2029
年C.2028年D.2027年13.函数()()()()()222212310faaaaa=−+−+−++−的单调增区间为()A.)5,+B.)5.5,+C.)6,+D.)6.5,+14.电影《你好,李焕英》在2021年正月初一正式
上映,一对夫妇带着他们的两个孩子去观看该影片,订购的4张电影票恰好在同一排且连在一起.为安全起见,影院要求每个孩子都至少有一位家长相邻陪坐,则不同的坐法种数是()A20B.16C.12D.815.在ABC中,角,
,ABC的对边分别为π3,,,sin32abccBa+=,20CACB=,7c=,则ABC的内切圆的半径r为()A.2B.1C.2D.3二、填空题(本大题共5个小题,每小题4分,共20分)16.函数()21232xfxxx−=++
+的定义域是___________.17.若函数f(x)=sinωx(ω>0)在区间0,3上单调递增,在区间,32上单调递减,则ω=________.18.若直线y=kx+1与双曲线221xy−=交于A、B两点,且线段AB的中点横坐标为1,则实数k=_________
__.19.某校进行体育抽测,小明与小华都要在50m跑、跳高、跳远、铅球、标枪、三级跳远这6项运动中选出3项进行测试,假设他们对这6项运动没有偏好,则他们选择的结果至少有2项相同的概率为______..20.已知数列{an}满足a1=﹣2,且S
n=32na+n(其中Sn为数列{an}前n项和),f(x)是定义在R上的奇函数,且满足f(2﹣x)=f(x),则f(a2021)=__.三、解答题(本大题共6个小题,共70分)21.现有甲、乙两项比赛,某选手在甲、乙两项比赛中获胜的概
率分别是34、23,若甲赛获胜记1分,乙赛获胜记2分,没有获胜均记0分.该选手参加甲赛2次,乙赛1次,且参赛的结果相互独立.求:(1)该选手恰好获胜1次的概率;(2)该选手的总得分的分布列和均值.22.在ABC中,角
,,ABC的对边分别为,,abc,已知3cos3B=,()6sin9AB+=,23ac=.(1)求sinA值;(2)求b和c值.23.已知数列na为公差不为0等差数列,23a=,且21loga,23loga,27loga成等差数列
.(1)求数列na的通项公式;(2)若数列nb满足11nnnbaa+=,求数列nb的前n项和.24.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,其中△ABC是边长为1的正三角形,棱2SC=为球O的直径.求
此三棱锥的体积.25.设函数()2fxmxnxp=++的图象过坐标原点,且对任意的xR,都有()()2fxfx=−成立.(1)若函数()fx的最小值为﹣1,求m,n的值;(2)若对任意的1,2m都有()6fx成立,求实数x的取值范围.26.已知抛物
线()2:20Expyp=上一点(),3Mt到焦点F的距离为4,直线:1lykx=+与E交于A,的的的B两点.(1)求抛物线E的方程;(2)以AB为直径的圆与x轴交于C,D两点,若4CD,求k的取值范
围.四川省南江县小河职业中学2020-2021学年高三下学期期末考试数学试题一、选择题(每题4分,共60分)【1题答案】【答案】B【2题答案】【答案】C【3题答案】【答案】D【4题答案】【答案】B【5题答案
】【答案】A【6题答案】【答案】D【7题答案】【答案】B【8题答案】【答案】C【9题答案】【答案】C【10题答案】【答案】C【11题答案】【答案】D【12题答案】【答案】B【13题答案】【答案】B【14题答案】【答案】B【15题答案】【答案】D二、填空题(本大题
共5个小题,每小题4分,共20分)【16题答案】【答案】2xx−且32x−【17题答案】【答案】32【18题答案】【答案】512−##152−+【19题答案】【答案】12【20题答案】【答案】0三、解答题(本大题共6个小题,共70分)【21题答案】
【答案】(1)16(2)分布列见解析,均值为176.【22题答案】【答案】(1)22sin3A=;(2)3b=,1c=【23题答案】【答案】(1)1nan=+(2)24nn+【24题答案】【答案】26【25题答案】【答案】(1)1,2mn==−(2)()1,3−【2
6题答案】【答案】(1)24xy=(2)11,,22−−+获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com