广东省五校2022-2023学年高二上学期期末联考数学试卷 含答案

DOC
  • 阅读 1 次
  • 下载 0 次
  • 页数 26 页
  • 大小 1.342 MB
  • 2024-09-29 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
广东省五校2022-2023学年高二上学期期末联考数学试卷 含答案
可在后台配置第一页与第二页中间广告代码
广东省五校2022-2023学年高二上学期期末联考数学试卷 含答案
可在后台配置第二页与第三页中间广告代码
广东省五校2022-2023学年高二上学期期末联考数学试卷 含答案
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的23 已有1人购买 付费阅读2.40 元
/ 26
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】广东省五校2022-2023学年高二上学期期末联考数学试卷 含答案.docx,共(26)页,1.342 MB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-c5cdcb0cf963b9ae55f28ee69802ae62.html

以下为本文档部分文字说明:

2022学年上学期高二期末试卷数学本试卷分选择题和非选择题两部分,共4页,满分150分,考试用时120分钟.注意事项:1.开考前,考生务必用黑色字迹的钢笔或签字笔将自已的校名、姓名、班级、考号等相关信息填写在答题卡指定区域内.

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉

原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.第一部分选择题(共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项

是符合题目要求的)1.集合|2sin1,RAxxx==,230Bxxx=−,则AB=()A.0,3B.π6C.π5π,66D.π5π,66【答案】D【解析】【详解】由2sin1x=得1sin2x=解得π2π6xk=+或5π2π,Z6kk+

,所以π|2π6Axxk==+或5π2π,Z6kk+,又由230xx−解得03x,所以03Bxx=,所以AB=π5π,66,故选:D.2.某地天气预报中说未来三天中该地下雪的概率均为0.6,为了用随机模拟的方法估计未来三天中恰有两天下雪的概率,用计算机

产生1~5之间的随机整数,当出现随机数1,2或3时,表示该天下雪,其概率为0.6,每3个随机数一组,表示一次模拟的结果,共产生了如下的20组随机数:522553135354313531423521541142125323345131332

515324132255325则据此估计该地未来三天中恰有两天下雪的概率为()A.25B.920C.12D.710【答案】B【解析】【详解】20组数据中,其中522,135,531,423,521,142,

125,324,325表示三天中恰有2天下雪,共有9组随机数,所以920P=.故选:B3.设复数z满足1zzz−=−,则z在复平面上对应的图形是()A.两条直线B.椭圆C.圆D.双曲线【答案】A【解析】【详解】设izxy=+,则izxy=−,1zzz−

=−可得:()()22212xyy−+=,化简得:()2213xy−=,即13xy−=或13xy−=−,则z在复平面上对应的图形是两条直线.故选:A4.在ABC中,已知3a=,π3A=,bx=,满足此条件的三角形只有

一个,则x满足()A.23x=B.()0,3xC.()230,3xD.(230,3x【答案】D【解析】【详解】由正弦定理得3πsinsin3xB=,则有3sin23sin32BxB==,()2π0,π0,3BA骣琪?=琪桫.∵满足条件的三角形只有一个,即x有唯一的角与其对应,

则ππ0,23B禳纟镲çÎú睚çú镲铪棼,故{}(]23sin230,3xB=?.故选:D5.圆内接四边形ABCD中2AD=,4CD=,BD是圆的直径,则ACBD=()A.12B.12−C.20D.20−【答案】B【解析】【详解】由

题知90BADBCD==o,2AD=,4CD=∴()ACBDADDCBDADBDDCBD=+=+22=coscosADBDBDADCBDBDCADDC−=−41612=−=−.故选:B.6.已知

数列na为等差数列,若2830aa+,670aa,且数列na的前n项和有最大值,那么nS取得最小正值时n为()A.11B.12C.7D.6【答案】A【解析】【详解】因为等差数列的前n项和有最大值,故可得0d,因为2830aa+,故可得10224+ad,即10

112+da,所以7012−ad,可得7102ad,又因为670aa,故可得60a,所以数列na的前6项和有最大值,且6712110+=+aaad,又因为()122711612602==++aSaaa,()

611111111102+==Saaa,故nS取得最小正值时n等于11.故选:A.7.已知过椭圆()222210xyabab+=的左焦点()1,0F−的直线与椭圆交于不同的两点A,B,与y轴交于点C,点C,F是线段AB的三等分点,则该椭圆的标准方程是()A.22165

xy+=B.22154xy+=C.22132xy+=D.22143xy+=【答案】B【解析】【详解】不妨设A在第一象限,由椭圆的左焦点()1,0F−,点C,F是线段AB的三等分点,则C为1AF的中点,1F为BC中点,所以1Ax=,所以22211Ayab+=,则2A

bya=即21,bAa,所以220,2bCa,22,2bBa−−,将点坐标代入椭圆方程得4222441baab+=,即222414baa+=,又221ab−=,所以25a=,24b=,所以椭圆的标准方程是22154xy+=.

故选:B8.定义在()0,+的函数()yfx=满足:对1x,()20,x+,且12xx,()()2112120xfxxfxxx−−成立,且()39f=,则不等式()3fxx的解集为()A.()9,+B.()0,9C.()0,3D.()3,+【答案】D【解析】【详解

】由()()2112120xfxxfxxx−−且1x,()20,x+,则两边同时除以12xx可得()()1212120fxfxxxxx−−,令()()fxgxx=,则()()fxgxx=在()0,+单调递增,由()3fxx得()3fxx且(3)

(3)33fg==,即()(3)gxg解得3x,故选:D.二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分)9.已知双曲线

22221xyab−=(0a,0b)的右焦点为(),0Fc,在线段OF上存在一点M,使得M到渐近线的距离为34c,则双曲线离心率的值可以为()A.7B.2C.43D.2【答案】AB【解析】【详解】2

2221xyab−=的一条渐近线方程为0bxay−=,设(),0Mm,0mc,2234bmcab=+,整理得:234cmb=,因为0mc,所以234ccb,即22344cbca=−,解得:477ca,因为7477,2477,44737,47

27,所以AB正确,CD错误.故选:AB10.已知正实数a,b满足8abab++=,下列说法正确的是()A.ab的最大值为2B.ab+的最小值为4C.2+ab的最小值为623−D.()111abb++的最小值为12【答案】BCD【解析】【详解】对于

A,因为82abababab++=+,即()2280abab+−,解得42ab−,又因为正实数a,b,所以02ab,则有4ab,当且仅当2ab==时取得等号,故A错误;对于B,2()8()4abababab+++=++,即()24()320abab+

++−,解得8ab+−(舍)4ab+,当且仅当2ab==时取得等号,故B正确;对于C,由题可得(1)8baa+=−所以801aba−=+,解得08a,()8181818221321361112231aaaaaaabaaa−

=+−=++−++=+−=−++++,当且仅当1811aa+=+即321a=−时取得等号,故C正确;对于D,11111(1)(1)8(1)abbabbabb+=+++++1(1)112(22)8(1)82bababb+=+++=

+,当且仅当(1)44,(1)15babbabaabbb+====++时取得等号,故D正确,故选:BCD.11.已知正方体1111ABCDABCD−的边长为2,E为正方体内(包括边界)上的一点,且满足15sin5EDD=

,则下列说正确的有()A.若E为面1111DCBA内一点,则E点的轨迹长度为π2B.过AB作面使得DE⊥,若E,则E的轨迹为椭圆的一部分C.若F,G分别为11AD,11BC的中点,E面FGAB,则E的轨迹为双曲线的一

部分D.若F,G分别为11AD,11BC的中点,DE与面FGAB所成角为,则sin的范围为10310,1010【答案】ABD【解析】【详解】对于A项,正方体1111ABCDABCD−中,1DD⊥平面1

111DCBA,若E为面1111DCBA内一点,所以11DDDE⊥.又因为15sin5EDD=,所以11tan2EDD=,在1RtEDD中11111tan22DEDEEDDDD===,所以11DE=故点E的轨迹是以1D为圆心1为半径的14个圆弧,所以E

点的轨迹长度为1π2π142=故A正确.对于B项,因为15sin5EDD=,即1EDD为定值,线段1DD也为定值,取11AD的中点1O,故点E的轨迹是以1DD为轴线,1DO为母线的圆锥的侧面上的点.设平面即为下图的圆O面,过点H作1DA的平行线交圆锥底面于

点1H,交1DD于点M,从图形可得11DMHDDAEDD==,易得1DOHHMOEDD=,故E的轨迹为椭圆的一部分,所以B正确.对于C项,平面与轴线1DD所成的角即为平面与1AA所成的角,1AA

F是平面与轴线1DD所成的角,在1RtAAF中1111tan2AFAAFAA==,而母线DF与轴线1DD所成的角为1FDD,在1RtFDD中1111tan2FDFDDDD==,即母线与轴线所成的角与截面与轴线所成的角,所以点E的轨

迹应为抛物线,故C不正确.对于D项,以D为原点,1,,DADCDD分别为,,xyz轴的非负半轴建立如图所示的坐标系,连接DE并延长交上底面1111DCBA于点1E,设111π,0,2ADE=,则()()

()()()10,0,0cos,sin,12,0,02,2,01,0,2DEABF,()1cos,sin,1DE=则()()0,2,01,0,2ABAF==−,设面ABGF的法向量为(),,nxyz

=所以()0202,0,1200nABynxznAF===−+==所以DE与面FGAB所成角的正弦值为112cos12cos1sin5210nDEnDE++===又因为

π0,2cos11,32+所以2cos110310,101010+,故D正确.故选:ABD12.已知函数()()lnfxx=−,()()ln4gxx=+,则()A.函数()()22y

fxgx=−+−为偶函数B.函数()()yfxgx=−为奇函数C.函数()()22yfxgx=−−−为奇函数D.2x=−为函数函数()()yfxgx=+图像的对称轴【答案】CD【解析】【详解】对于A,()()22ln(2)ln(2

)yfxgxxx=−+−=−++,定义域为()2,+,所以函数为非奇非偶函数,故A错误;对于B,()()ln()ln(4)yfxgxxx=−=−−+定义域为()40−,,所以函数为非奇非偶函数,故B错误;对于C,()()22ln(2)ln(2)yf

xgxxx=−−−=−−+,定义域为()2,2−,设()ln(2)ln(2)hxxx=−++,()ln(2)ln(2)()hxxxhx−=+−−=−,所以函数为奇函数,故C正确;对于D,设()()2()ln(4)txfxgxxx=+=−−定义域为()4,0−,22(4)

ln(4)4(4)ln(4)()txxxxxtx−−=−−−−−−=−−=,所以2x=−为函数函数()()yfxgx=+图像的对称轴,故D正确,故选:CD.第二部分非选择题(共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.已知首项为2的数列na对*Nn

满足134nnaa+=+,则数列na的通项公式na=______.【答案】1432n−−【解析】【详解】设()13nnaa++=+,即132nnaa+=+,故24=,解得:2=,故134nnaa+=+变形为()1232nnaa++=+,122

24a+=+=,故2na+是首项为4的等比数列,公比为3,则1243nna−+=,所以1432nna−=−,故答案为:1432n−−14.已知直线l的方向向量为()1,0,2n=,点()0,1,1A在直线l上,则点(

)1,2,2P到直线l的距离为______.【答案】305【详解】()1,1,1=AP,10215cos,553++===nAPnAPnAP,所以21510sin,155=−=nAP,点()1,2,2P到l的距离为1030sin,355===d

APnAP.故答案为:305.15.函数()()2cosfxx=+(0,ππ2)的部分图象如图所示,直线ym=(0m)与这部分图象相交于三个点,横坐标从左到右分别为1x,2x,3x,则()123sin

2xxx+−=______.【答案】22−【详解】由图可知,5π5π2cos144f=+=,即5π2cos42+=,则5ππ2π825π7π2π440ππ2

kk+=++=+,解得2=,3π4φ=-,故()3π2cos24fxx=−.则()3π02cos14f=−=−,()fx最小正周期为2ππ2=.直线ym=(0m)与

这部分图象相交于三个点,横坐标从左到右分别为1x,2x,3x,则由图可知125ππ3π2848xx+=-=,235ππ7π2848xx+=+=.∴()()()()123122312π14πππ2sin2sin2sinsinsin88442xxxxx

xx+−=+−+=−=−=−=−.故答案为:22−16.已知实数x、y满足||||14xxyy−=,则25xy−+的取值范围是________.【答案】(5,225]+.【解析】【详解】因为实数,xy满足||||14xxyy−=,当0

,0xy时,方程为2214xy−=的图象为双曲线在第一象限的部分;当0,0xy时,方程为2214xy+=的图象为椭圆在第四象限的部分;当0,0xy时,方程为2214xy−−=的图象不存在;当0,0xy时,方程为22+14xy−=的图象为双曲线在第三象限的部分;在同一坐标系中作出

函数的图象如图所示,25xy−+表示点(,)xy到直线250xy−+=的距离的5倍根据双曲线的方程可得,两条双曲线的渐近线均为12yx=,令25zxy=−+,即15222zyx=−+,与双曲线渐近线平行,观察图象可得,

当过点(,)xy且斜率为12的直线与椭圆相切时,点(,)xy到直线250xy−+=的距离最大,即当直线25zxy=−+与椭圆相切时,z最大,联立方程组221415222xyzyx+==−+,得()2222252510xzxzz−−+−+=,()()

22Δ225422510zzz=−−−+=,解得522z=,又因为椭圆的图象只有第四象限的部分,所以5+22z=,又直线250xy−+=与20xy−=的距离为1,故曲线上的点到直线的距离大于1,所以5z综上所述,5522z+,所以

5522z+,即(245,5+22xy+−,故答案为:(5,225]+.四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.已知函数()2πππ2sinsin23cos33

63fxxxx=−++−+.(1)求函数()fx的单调增区间;(2)求π2π3π4π5π6π7π24242424242424fffffff++++++的值.【答案】(

1)()π5ππ,π1212kkkZ−++(2)143【小问1详解】()2ππππ2sincos32cos1233263fxxxx=−−+++−−+πππ2sincos3cos223333xxx

=−−+−+ππsin23cos22333xx=−+−+2ππ2sin22333x=−++π2sin2233x=−+令()πππ22π

,2π322xkkkZ−−++,则()π5ππ,π1212xkkkZ−++.故函数()fx的单调增区间为()π5ππ,π1212kkkZ−++.【小问2详解】()π2sin223

3fxx=−+,令()π2sin23gxx=−,由()π2π3xkk-=?Z得()()43+1πππ6224kkxk=+=?Z,故()gx关于()()43+1π,024kk骣琪Î琪桫Z对称,故当0k=时,()

gx关于4π,024骣琪琪桫对称.故π2π3π4π5π6π7π24242424242424fffffff++++++π7π2π6π3π5π4π143242424

24242424ggggggg=+++++++0000143=++++143=.18.已知等比数列na对任意的n+N满足183nn

naa++=.(1)求数列na的通项公式;(2)若数列na的前n项和为nS,定义min,ab为a,b中较小的数,13min,log2nnnabS=,求数列nb的前

n项和nT.【答案】(1)123n-(2)21,42111093,42318nnnnnTnn−−=+−【小问1详解】设等比数列na公比为q,则有()1118131813nnnnnnnna

aaqaaaq+−−+=+=+=+=,两式相除化简得11131qq+=+,解得13q=,又()121831aaaq=+=+,可得12a=.∴数列na的通项公式1112233nnna−−==.【小问2详解】11213131

313nnnS−−==−−,则111331111min,logmin,logmin,221111333313333nnnnnnbn−−−−−===

−−−−.令11313nn−−−,即1143nn−−,∵()1143,43n−−,∴当4n时,1143nn−−,即11313nn−−−;当4n时,1143nn−−,即11313nn−−−;∴111,

41min3,1133,43nnnnnbnn−−−=−−=−.故当4n,()20122nnnnnT+--==;当4n时,()341111333333nnTn-骣骣骣琪琪琪=+-+-+-++-琪琪琪桫桫桫33111113311111093636311823231813

nnnnnn---轾骣骣犏--琪琪琪琪犏骣桫桫臌琪=-+=--+=?-琪×桫-.故21,42111093,42318nnnnnTnn−−=+−.19.已知平面内一动点P

到定点()0,1F的距离比它到x轴的距离多1.(1)求P点的轨迹方程C;(2)过点()0,5Q作直线l与曲线C交于,AB(A点在B点左侧),求ABFAFOSS+△△的最小值.【答案】(1)24xy=或.0(0)xy=(2

)20【小问1详解】由题知,动点P到定点()0,1F的距离比它到x轴的距离多1,设(,)Pxy,所以1PFy=+,当0y时,22(1)1xyy+−=+,化简得24xy=,当0y时,22(1)1xyy+−=−,化简得0x=,所以P点

的轨迹方程为2:4Cxy=,或.0(0)xy=.【小问2详解】由题得,过点()0,5Q作直线l与曲线C交于,AB(A点在B点左侧),所以由(1)得2:4Cxy=,设直线l为11225,(,),(,)ykxAxyBxy=+,将5ykx=+代入2:4Cxy=中得24200x

kx−−=,所以216800k=+,即Rk,12124,20xxkxx+==−,即1220xx−=,所以ABFAFOAQFBQFAFOSSSSS+=++1212111112()222QFxxOFxxxx=−+=−−222222240105050222220xxxxxxx=++=+=当且仅当

22502xx=,即25x=时,取等号,所以()min20ABFAFOSS+=所以ABFAFOSS+△△的最小值为20.20.已知正项数列na满足2112nnnnnaaaaa+++−=,且121aa==,设1nnnn

abaa+=+.(1)求证:数列nb为等比数列并求na的通项公式;(2)设数列nb的前n项和为nS,求数列1nnnbSS+的前n项和nP.【答案】(1)()222211,113721,2nnnan−==−(2)12221nnP+=−−

【小问1详解】因为1nnnnabaa+=+,所以1121++++=+nnnnabaa,因为2112nnnnnaaaaa+++−=,所以2112++++=nnnnnaaaaa,所以()()11121111212

11++++++++++++++++===+++nnnnnnnnnnnnnnnnnnnnnaaaaaaaaabbaaaaaaaaaa11111222+++++==+nnnnnnaaaaaa,且112112==+abaa,所以数列nb是以12为公比,12为首项的等比数列,即12nn

b=,即112+=+nnnnaaa,可得112++=nnnaa,()2121+=−nnnaa,所以2n时,()22221324112313721−−=−nnnaaaaaaa

a,即()2222113721−=−nna,而此时1n=时,()1121210−=−=a,所以()222211,113721,2nnnan−==−;【小问2详解】由(1)12nnb=,所以11122111

212nnnS−==−−,11112++=−nnS所以11111122111111112222+++==−−−−−nnnnnn

nnSSb,所以122311111112111111111111222222+=−+−++−−−−−−−nnnP111112222111

1122nnnP++=−=−−−−.21.已知四棱锥EABCD−中,44ABCD==,2AE=,//CDAB,22AD=,45DAB=,面ABCD⊥面ABE,17CE=.(1)求证:AECB⊥;(2)求面ADE与面BDE所成的二面角的余弦值.

【答案】(1)见解析(2)0【小问1详解】由题知,44ABCD==,2AE=,//CDAB,22AD=,45DAB=,面ABCD⊥面ABE,17CE=.过D作⊥DOAB,过C作CFAB⊥,即//DOCF,连接AC交DO于G,因为//CDAB,所以四边

形OFCD为平行四边形,所以,OFCDODFC==,因为在ADO△中,22,45,ADDAODOAO==⊥,所以2DOAO==,所以2CF=,因为44ABCD==,//CDAB,OFCD=,所以1OFCD

==所以3AF=,因为CFAB⊥,所以229413ACAFCF=+=+=,因为17CE=,2AE=,所以在ACE△中,222CEAEAC=+,即AEAC⊥,又因为⊥DOAB,平面ABCD⊥平面ABE且交于AB,所以DO⊥面

ABE,因为AE面ABE,所以DOAE⊥,因为,,DOACGDOAC=平面ABCD,所以⊥AE平面ABCD,因为CB平面ABCD,所以AECB⊥.【小问2详解】由(1)得,DO⊥面ABE,⊥AE平面ABCD,//DOCF,作//AzDO,所以Az⊥面ABE,AEAB⊥

,所以,AzAEAzAB⊥⊥,所以建立以A为原点,分别以,,AEABAz的方向为x轴,y轴,z轴正方向得空间直角坐标系Axyz−,因为2DOAO==,4AB=,2AE=,所以(0,0,0),(0,2,2),(2,0,0),(0,4,0)ADEB,所以(2,0,0),(2,2,

2),(0,2,2)AEDEBD==−−=−,设面ADE与面BDE的法向量分别为111222(,,),(,,)mxyznxyz==,所以·0·0mAEmDE==,即1111202220xxyz=−−=,令11y=,得(0,1,1)m=−,·0·0nBDnDE==

,即221112202220yzxyz−+=−−=,令21y=,得(2,1,1)n=,设面ADE与面BDE所成的二面角为,所以面ADE与面BDE所成的二面角的余弦值为011cos026mnmn+−===.所以面ADE与面BDE所

成的二面角的余弦值为0.22.换元法在数学中应用较为广泛,其目的在于把不容易解决的问题转化为数学情景.例如,已知0a,0b,4ab+=,求33+ab的最小值.其求解过程可以是:设2at=−,2bt=+,其中

22t−,则()()()()3333232322281268126161216abttttttttt+=−++=−+−++++=+;当0=t时33+ab取得最小值16,这种换元方法称为“对称换元”.已知平面内一动点P到两个定点()11,0F−,()21,0F的距离之和为

4.(1)请利用上述方法,求P点的轨迹方程M;(2)过轨迹M与x轴负半轴交点A作斜率为k的直线交轨迹M于另一点B,连接2BF并延长交M于点C,若1FCAB⊥,求k的值.【答案】(1)22143xy+=(2)6

12【解析】【小问1详解】由题知,平面内一动点P到两个定点()11,0F−,()21,0F的距离之和为4,满足椭圆的定义,即P点的轨迹为焦点在x轴上的椭圆,所以2,1ac==,所以3b=,所以P点的轨迹方程M为22143x

y+=,【小问2详解】由(1)得22:143xyM+=,()11,0F−,()21,0F,因为M与x轴负半轴交点A作斜率为k的直线交轨迹M于另一点B,连接2BF并延长交M于点C,1FCAB⊥所以(2,0)A−,设直线AB为(2)ykx=+,直

线1FC为1(1)yxk=−+,11(,)Bxy,联立22143(2)xyykx+==+,消去y得2222(34)1616120kxkxk+++−=,所以21216234kxk−−+=+,即2126834kxk−=+,所以121

234kyk=+,所以2226812(,)3434kkBkk−++,所以22222124346814134BFkkkkkkk+==−−−+,所以224:(1)14BFklyxk=−−,联立24(1)141(1)kyxkyxk=−−=−+,解得2818xkyk=−

=−,即2(81,8)Ckk−−因为点C在椭圆上,所以()()222818143kk−−+=,化简得4219220890kk+−=,解得2124k=或298k=−(舍去),所以612k=,所以k的值为612.获得更多资源请扫码加入享学资源网微信公众号

www.xiangxue100.com

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
相关资源
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?