【文档说明】数列03 构造法求通项与裂项、错位相减求和 突破专项训练-2022届高三数学解答题.docx,共(6)页,473.604 KB,由管理员店铺上传
转载请保留链接:https://www.doc5u.com/view-bc3499ee70f5f8dc66087a7e0aaab687.html
以下为本文档部分文字说明:
临澧一中2022届高三数学解答题突破专项训练数列03(构造法求通项与裂项、错位相减求和)1.已知数列{}na满足12a=,1(2)3(1)nnnana++=+.(1)求数列{}na的通项公式;(2)设nS为数列{}na的前n项和,求证:154nS.2.已知数列{}na中,11a=,
1(*)3nnnaanNa+=+.(1)求{}na的通项公式na;(2)数列{}nb满足(31)2nnnnnba=−,设nT为数列{}nb的前n项和,求使nkT恒成立的最小的整数k.3.已知数列{}na
中,213a=,112nnnnaaaa++=+.(1)求数列{}na的通项公式;(2)令(21){}(2)nnann−+的前n项和为nT,求证:34nT.4.已知数列{}na满足12a=,1122(*)nnnaan
N++−=.(1)求数列{}na的通项公式;(2)设12nnnbna++=,求数列{}nb的前n项和nT.5.已知数列{}na满足13a=,121nnaan+=−+,数列{}nb满足12b=,1nnnbban+=+−.(1)证明数列{}nan−为等比数列并求数列{}na的通项公式;(2)数
列{}nc满足1(1)(1)nnnnancbb+−=++,设数列{}nc的前n项和nT,证明:13nT.6.已知在数列{}na中,112a=,111122nnnnaa+++=+.(1)求数列{}na的通项公式;(2)求数列nan的前n项和nS.参考答案1.解:(1)数列{}na满足1
2a=,1(2)3(1)nnnana++=+,11231nnanan++=+,111211211131()2(1)()3123nnnnnnnaaannaanaaann−−−−−+==
=+−.(2)证明:21111234()(1)()333nnSn−=+++++,211111123()()(1)()33333nnnSnn−=+++++,12111[1()]211111332()()(1)()2(1)()133333313nnnnn
Snn−−−=++++−+=+−+−,可得:352513515[()]2223224nnnS+=−=.即154nS.2.解:(1)由13nnnaaa+=+,可得1131nnaa+=+,即有111113()22nnaa++=+,即11{}2na+是首项为32,公
比为3的等比数列,则111333222nnna−+==,则231nna=−;(2)12(31)(31)22312nnnnnnnnnnnba−=−=−=−,则11234...12482nnnT−=+++++,11234...2248162nnnT=++++
+,两式相减可得1111111121...1224822212nnnnnnnT−−=+++++−=−−12(1)22nnn=−−,所以12442nnnT−+=−,由nkT恒成立,可得4k…,则最小的整数k为4.3.解:(1)
由213a=,112nnnnaaaa++=+,可得1212112233aaaaa=+=+,解得11a=,又对112nnnnaaaa++=+两边取倒数,可得1112nnaa+−=,则1{}na是首项为1,公差为2的等差数列,可得112(1)
21nnna=+−=−,所以121nan=−;(2)证明:由(1)可得(21)1111()(2)(2)22nnannnnnn−==−+++,所以11111111111323(1...)[]23243511222(1)(2)nnTnnnnnn+=−+−+−++−+−=−−++++,因为*nN,所
以230(1)(2)nnn+++,则133224nT=.4.解:(1)由1122nnnaa++−=,可得11122nnnnaa++−=,则数列{}2nna是首项为112a=,公差为1的等差数列,则112nnann=+−=,即2nnan=;(2)11
12211(1)22(1)2nnnnnnnbnannnn+++++===−++,2231111111...122222322(1)2nnnTnn+=−+−++−+1112(1)2nn+=−
+.5.解:(1)证明:当*nN时,1(1)(21)(1)2nnnnanannanan+−+−+−+==−−,又112a−=,数列{}nan−是首项为2,公比为2的等比数列,11(1)22nnnana−−=−=,*2(
)nnannN=+;(2)证明:122nnnnnnnbbanbnnb+=+−=++−=+,12nnnbb+−=,当1n=时12b=,当2n…时112nnnbb−−−=,111121121()()22222221nnnnnnbbbbbb−−−−
=−++−+=+++=+=−,当1n=时符合,2nnb=,111211(1)(1)(21)(21)2121nnnnnnnnnancbb+++−===−++++++,1212231111111111111()()()()2121212121212121321nnnnnnnnTccc
c−−++=++++=−+−++−+−=−+++++++++.又11021n++,13nT.6.解:(1)因为111122nnnnaa+++=+,所以1122(1)nnnnaan++=++,所以11221nnnnaan++−=+,所以1122112
211(1)2(22)(22)(22)2122nnnnnnnnnnnnaaaaaaaan−−−−−−+=−+−++−+=+++=所以1(1)2nnnna++=.(2)记112nnnanbn++==,所以1231231231...2
222nnnnnnnSbbbbb−++=++++=++++,①34121231...22222nnnnnS+++=++++,②①−②得:112211(1)1111111182...122816222212nnnnnnnS−+++−++=++++−=+−−,所以1
3322nnnS++=−.