【文档说明】2023届河北省部分示范性高中高三三模 数学答案和解析.pdf,共(11)页,454.237 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-ba60fa802f2e056843abf6fa4aae6a6e.html
以下为本文档部分文字说明:
数学参考答案第1页共10页数学参考答案选择题:(共12小题,每小题5分,共60分,其中9至12题为多选题,全部选对得5分,部分选对得2分,有选错的得0分).题号123456789101112答案DAABCDBABCABDBDBD填空题:本大题
共4小题,每小题5分,共20分.13.21yx14.63()55,15.33316.59,4225n(说明:第16题第一空2分,第2空3分)1.【答案】C【详解】2{|6}{|23}AxZxxxZxx或,{|44}Bxx,则{4,3,4}AB2.【答
案】A【详解】(2)izm,(2)25mmizi,255mmzi,又m为正实数复数z在复平面内对应的点位于第一象限3.【答案】A【详解】直线1:10laxy与2:10lxay平行的充要条件是:12kk且不重合,由1aa得1a,又1a时
两直线重合,直线1:10laxy与2:10lxay平行的充要条件是1a4.【答案】B【详解】将任意一张纸片沿直线(不过顶点)剪开,得到2张纸片,则总边数增加4,所以{an}公差为4,首项为8的等差数列,123
1010910842602aaaa5.【答案】C【详解】如图,过D作直线DF//BE,交AC于F,则111,33326EFBDAEAEEFECECBC67AEAF,67APAEADAF66()77APADxAByAC
又B,D,C三点共线,1xy故66()77mnxyF数学参考答案第2页共10页6.【答案】D【详解】函数()gx为奇函数,且(4)()gxgx取2x得,(24)(2)(2)ggg,即(2)(2)gg,(2)0g又(6)(24)(2)0
ggg,2(6)(6)636fg7.【答案】B【详解】法一:如图,设直线EF交x轴于点P,过O作EF的垂线,垂足为H,则2AOH,2POHHPO又直线EF的斜率为14,1tan4POHtant
antantan()422AOHPOHHPO22222sincos2tan2(4)8222sin()(4)117sincostan1222法二:设(cossin)(cossin)EF,,
,,则sinsin1coscos4EFk又sinsincoscos2cossin1222sinsintan222,tan42
同法一可得8sin()178.A【答案】【详解】ln()0lnlnxaaxfxexxaxeax令()xgxex,则()(ln)gxgax在区间2(1,)e上恰有2个实根()gxQ在R上单调递增,lnxax即lnxax在区间2(1,)e上恰有2个实根,(
)lnxhxx与ya在区间2(1,)e上恰有2个交点2ln1()(ln)xhxx,()lnxhxx在区间(1,)e上单调递减,在区间2(,)ee上单调递增HP数学参考答案第3页共10页当1x
®时,()hx,且()hee,22()2ehe;故22eea,选A9.【答案】BC【详解】由函数()0.3xfx=在R上单调递减,得0.70.90.30.3>,故A选项不正确;由函数1.3()logfxx=在(0,)+¥上单调递增,得1.31.3log3log2>,故B选项
正确;0.30.3log0.2log0.31>=,0.200.30.31<=,所以0.20.3log0.20.3>,故C选项正确;331log2log22>=,1.111222--<=,所以1.13log20.3->,故D选项不正确;10.【答案】
ABD【详解】()cos()6fxx过点4(,0)9,4cos()0964()962kkZ解得39()44kkZ,由图知421399T,所以189132,故32所最小正周期为43,A选
项正确;当[0]2x,时,311[,]26612x,3()cos()26fxx单调递减,B选项正确;3()cos()26fxx的对称轴为2()93kxkZ,59x不是()fx的对称轴,故C选项
不正确;将函数sinyx的图象向左平移23个单位得到2sin()3yx的图象,再将图象上各点的横坐标缩短到原来的23倍,得到32sin()23yx的图象,又3233sin()sin()c
os()2326226yxxx,故D选项正确11.【答案】BD【详解】记圆M的半径为R,R=2,|OM|=6,圆O的半径为r点(4,2)在圆:M22(6)4xy外,故作圆M的切
线恰有2条,故A不正确;圆O和圆M恰有3条公切线,则圆O和圆M相外切,||OMrR,4r,故B正确;当圆O和圆M外离时,||PQ的最小值为||1OMrR,此时3r,当圆O和圆M内含时,||PQ的最小值为||1rOMR,此时9r,故C不正确;当2r时,则直线PQ的斜率
的最大值是斜率为正的内公切线斜率,数学参考答案第4页共10页此时2242553616||()rRkOMrR,故D正确12.【答案】BD【详解】1b,222ac,2223cos122abcCaba
,故32a,选项A不正确;由333sincos222sinbBCaaA,2sincos3sinACB,又sinsin()BAC2sincos3sincos3cossinACACAC,
即tan3tan0AC,选项B正确;又3cos02Ca,(0)tan02CC,,2tantan2tan223tantan()11tantan13tan313tan23tantantanACCBACAC
CCCCC(当且仅当3tan3C,即2,663CBA,取等号),6B,选项C不正确;6B,1sin2B,ABC的外接圆直径22sinbRB,ABC的外接
圆面积2SR,(当且仅当3tan3C,即2,663CBA,取等号),选项D正确;13.【答案】21yx【详解】1ln()xxfxex,(1)1f又121ln()xxfxex,(1)2f
故切线斜率(1)2kf,切点为(1,1)切线方程为12(1)yx,即21yx14.【答案】63()55,【详解】设向量b在向量a上的投影向量为a,则25abaaa(2)()Qabab,(2)(
)0abab,即2220abab,又(21)||1,,ab,3ab53,35,故向量b在向量a上的投影向量为a=63()55,数学参考答案第5页共10页15.【答案】333【详解】如图,设球心为O,半径为r,由题可知,球O半径最大
时,与平面ABCD,平面BCC1B1,平面DCC1D1,平面AB1D1均相切,设球O与平面ABCD相切于点H,与平面AB1D1相切于点O1,则O1为AB1D1的中心,11122333OOOHrOCAC,,11233OCOCOOr,由11sin3OHACAO
C,得11sin2333rACAr,解得333r16.【答案】59,4225n【详解】由题可知213221325aaaa,,43542111213aaaa,,65768721272292159aaaaaa,,22212
2212(2)125nnnnaaaa,22252(5)nnaa数列2{5}na是首项为258a,公比为2的等比数列,122258225nnnnaa,
,故当n为偶数时4225nna解答题:本大题共70分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)解:(1)设等差数列na的公差为d,则117545552adad,解得134ad,所以34141nann,
214322nnnSnnn....................................5分(2)1111111nnnnnnnnnnaSSbSSSSSS...............
...............................................................7分所以123nnTbbbb122334111)111111())()((nnSSSSSSSS22111
1111132(1)(1)3253nSSnnnn.......................................................10分18.(本小题满分12分)解:(1)设点Mxy,,当点M不与点P重合
时,即当2x且2y时,由垂径定理可知CMAB,即CMPM.....................................................................2分设点Mxy,,又圆C的圆心为(8,0),2,2P数学参考答案第6页
共10页则8,CMxy,2,2PMxy(8)(2)(2)0CMPMxxyy,即22(5)(1)10xy...............................4分当点M与点P重合时,点P的坐标也
满足方程22(5)(1)10xy故点M的轨迹方程为圆22:(5)(1)10Nxy............................................................
5分(2)当22OMOP时,点M与点P满足圆O的方程228xy又点M与点P在圆22:(5)(1)10Nxy上直线MP为圆O和圆N的交线,圆O与圆N的方程相减得,直线MP的方程为2222(5)(1)810()[]yyxx
,即5012xyl的方程为:5012xy..........................................................................................8分点O
到直线MP的距离2|12|122651d......................................................................9分又圆O的
半径22r弦长2214416||2282626MPrd..................................................................11分POM△的面积11161
248||22132626SMPd..................................................12分法二:设Mmn,由题意可得2222+=
85+1=102mnmnm,解得34=1314=13mn,即点3414(,)1313M.....................7分又14213534213PMk
,直线l的方程为252yx,即5120xy...............................................9分1OPk,则直线OP的方程为0xy,且22OP........
.....................................10分点M到直线OP的距离为4848132132d...........................................................
........11分故POM△的面积114848222213132SOPd..............................................12分19.(本小题满分12分)解:(1)取AB中点O,连接11,,OCOAAB,A
CBCOAOBABOC,........................................................................................1分1AAB△为正三角形,OAOB1ABOA..........
..............................................................2分又11,OCOAOOCOA、平面1AOC,AB平面1AOC.....................
...................4分数学参考答案第7页共10页又1AC平面1AOC,1ABAC.......................................................................................5
分(2)11ACBC,又1ABAC,1BCABB,1,BCAB平面1ABC1AC平面1ABC,又1AC平面1ABC,11ACAC四边形11AACC为菱形,12ACAA,ABC为等边三角形,3OC,以O为原点,如图建立空间直
角坐标系,................................................................................................7分11(1,0,0),(1,0,0),(0,3,0),(2,
3,0),(0,0,3)ABABC设平面1BAC的法向量1(,,)nxyz,1(1,3,0),(1,0,3)BABC则3030xyxz,令1z,可得1(3,1,1)n.............
........9分设平面11BAC的法向量2(,,)nxyz,111(1,3,0),(1,0,3)BAACAC则3030xyxz,令1z,可得2(3
,1,1)n......................................................11分则123113cos,5311311nn.所以平面1BAA与平面1CAA夹角的余弦值为35.........
...............................................12分20.(本小题满分12分)解:(1)在△ABC中,222221(1)1cos222ABBCACABABABBABBCAB
,因为0180B,所以120B................................................................................
......2分由13sin120324ABCSABBCAB△,得4AB..................................................3分221164121ACABAB
,即21AC......................................................4分521ABBCAC,即△ABC的周长为521............................................
.....5分(2)设BDC,则60DBC,60ABD,60BAD.在△ABD中,由sin(60)sin60BDAB,得3sin(60)sin60BD.....................................7分在△BCD
中,由sin120sinBDBC,得sin120sinBD.......................................................9分3sin(60)sin120sin60sin
,即4sinsin(60)1sin(230)1..............................................................................
................................11分060,33500210,00239,解得30,即∠BDC的值为30...............
..................................12分21.(本小题满分12分)数学参考答案第8页共10页解:(1)对任意的(0,)x,()1fx恒成立(1)1f,即(1)31fa,2a......
................................................................2分下面证明:当2a时,()1fx恒成立当2a时,22()=ln+3ln2+3fxxxaxxxxxx欲证()1fx,只需证2l
n2+31xxxx,∵>0x,故只需证1ln2+3xxx,即证:1ln2+30xxx..................................4分令1()=ln2+3gxxxx,则2222112++1(2+1)(1)()=2+==xxxxgx
xxxx故知函数()gx在(0,1)上单调递增,在(1,+)上单调递减故max()(1)0gxg,故()0gx,即1ln2+3xxx成立实数a的取值范围为[2),..................................
....................................................6分(2)由(1)可知当2a时,()1fx,即2ln231xxxx,即1ln23xxx...........................................
..................................8分取1nxn得,12(1)212ln3=11(1)nnnnnnnnnnn.........................
...............10分34522341lnlnlnlnln(1)122334(1)123nnnnnn.....................12分22.(本小题
满分12分)解:(Ⅰ)23122()(1)fxaxxx23(1)(2(0)xaxxx--)........................................1分由12322(1)((2()01,axxxaaf
xxxxa--))...........................................2分①当02a时,1>2a(0,1)x或2()xa,时,0>)(′xf;2(1,)xa时,0<)(′xf()fx
在(0,1)上单调递增,在2(1,)a上单调递减,在2()a,上单调递增.............3分②当2a时,1=2a数学参考答案第9页共10页(0,)x时,()0fx≥,()fx在(
0,)单调递增................................................4分③当2a时,1<2<0a,2(0,)xa或(1,)x时,0>)(′xf;2(,1)xa时,0<)(′xf()fx在2(0,)a上单调递增,在2(,1)a上单调递
减,在(1),上单调递增.............5分(Ⅱ)由(Ⅰ)知,1a时,221()lnxfxxxx,2312()1fxxxx2记3()()()2Fxfxfx23532ln2xxxxx
1,[1,)x①当2x时,22225252()0ln30ln322Fxxxxxxxxxxxxx11记25()ln3(2)2Gxxxxxx,7()2ln2Gxxx1()20G
xx,()Gx在(2,)上单调递增又1(2)ln20,(2.3)1.1ln2.302GG存在0(2,2.3)x使得0()0Gx,即0072ln02xx当0(2,)xx时,()0Gx,()Gx单调递减当
0(,2.3)xx时,()0Gx,()Gx单调递增222min00000000000575()()ln3(2)33222GxGxxxxxxxxxxx2()+3Hxxx在(2,2.3)上单调递减,2()(2.3)2.32.3+30.
01HxH2min000()()30GxGxxx()0Gx,又22220xxxx1,2252ln32xxxxxx1,即()0Fx........................
..........................................9分②当[1,2]x时,令g()lnxxx,23532()2hxxxx1,]2,1[x于是()g(()Fxxhx),数学参考答案第10页共10页1g()10
xxxx1≥,ming()x1=g(1)又22344326326()xxhxxxxx设2()326xxx,则()x在]2,1[x上单调递减,又(1)1,(2)10,存在]2,1[0∈x,使得0()
0x,且0<<1xx时,()0x;2<<0xx时,()0x()hx在0(1,)x上单调递增,在0(,2)x上单调递减又1(1)2h,(2)1h,min()hx(2)1h()g(()g(1(2)1(1)0Fxx
hxh)).综上①②,故()0Fx,即23)()(xfxf对于任意的[1,)x成立...............12分获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.co
m