【文档说明】2021学年人教A版数学选修2-3跟踪训练:1.2.1 第二课时 排列的综合应用.docx,共(6)页,95.076 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-b8a3a9f06bef03def387ee4be7f8882e.html
以下为本文档部分文字说明:
[A组学业达标]1.A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排法有()A.60种B.48种C.36种D.24种解析:把A,B视为一人,且B排在A的右边,则本题相当于4人的全排列,故有A44=24种排法.答案:D2.六个人从左至右排成一行,最左端只能排甲或乙,
最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种解析:根据甲、乙的位置要求分类解决,分两类.第一类,甲在最左端,有A55=5×4×3×2×1=120(种)方法;第二类,乙在最左端,有4A44=4×4×3×2×1
=96(种)方法.所以共有120+96=216(种)方法.答案:B3.5名男生与5名女生排成一排,男生甲与男生乙之间有且只有2名女生,且女生不排在两端,这样的排列种数为()A.5760B.57600C.2880D.288
00解析:先选2名女生放在男生甲与男生乙之间,并捆绑在一起看作一个大元素,从大元素和另外的3名男生中选2个排在两端,剩下的和女生全排列,故有A22·A25·A24·A55=57600(种)排法.故选B.答案:B4.
用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()A.144个B.120个C.96个D.72个解析:当五位数的万位为4时,个位可以是0,2,此时满足条件的偶数共有2A34=48(个);当五位数的万位为5时,个位可以是0,2,4,此时满足条件的偶数共有3A3
4=72(个).所以比40000大的偶数共有48+72=120(个).答案:B5.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架歼-15飞机准备着舰.如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法有()A.12种B.18种C
.24种D.48种解析:把甲、乙看作1个元素和另一飞机全排列,调整甲、乙,共有A22·A22种方法,再把丙、丁插入到刚才“两个”元素排列产生的3个空位中,有A23种方法,由分步乘法计数原理可得总的方法种数为A22·A22·A23=24.答案:C6.把5件不同产品摆成一排.若产品A与产品B相邻,
且产品A与产品C不相邻,则不同的摆法有________种.解析:先将A,B捆绑在一起,有A22种摆法,再将它们与其他3件产品全排列,有A44种摆法,共有A22A44种摆法.而A,B,C这3件产品在一起,且A,B相邻,A,C相邻有2A33种摆法.
故A,B相邻,A,C不相邻的摆法有A22A44-2A33=36(种).答案:367.从班委会的5名成员中选出3名分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有________种.(用
数字作答)解析:文娱委员有3种选法,则安排学习委员、体育委员有A24=12种方法.由分步乘法计数原理知,共有3×12=36种选法.答案:368.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是______
__.解析:5张参观券全部分给4人,分给同一人的2张参观券连号,方法数为:1和2,2和3,3和4,4和5,四种连号,其他号码各为一组,分给4人,共有4×A44=96(种).答案:969.分别求出符合下列要求的不同排法的种数.(1)6名学生排3排
,前排1人,中排2人,后排3人;(2)6名学生排成一排,甲不在排头也不在排尾;(3)6人排成一排,甲、乙不相邻.解析:(1)分排与直排一一对应,故排法种数为A66=720.(2)甲不能排头尾,让受特殊限制的甲先选位置,有A14种选法,然后其他5人排,有A55
种排法,故排法种数为A14A55=480.(3)甲、乙不相邻,第一步除甲、乙外的其余4人先排好;第二步,甲、乙在已排好的4人的左、右及之间的空位中排,共有A44A25=480(种)排法.10.7名班委中有A,B,C三人,有7种不同的职务,现
对7名班委进行职务具体分工.(1)若正、副班长两职只能从A,B,C三人中选两人担任,有多少种分工方案?(2)若正、副班长两职至少要选A,B,C三人中的一人担任,有多少种分工方案?解析:(1)先排正、副班长有A23种方法,再安排其余职务有A55种方法,依分步乘法计数
原理,知共有A23A55=720(种)分工方案.(2)7人中任意分工方案有A77种,A,B,C三人中无一人任正、副班长的分工方案有A24A55,因此A,B,C三人中至少有一人任正、副班长的方案有A77-A24A55=3
600(种).[B组能力提升]11.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24B.48C.60D.72解析:第一步,先排个位,有A13种选择;第二步,排前4位,有A44种选择.由分步乘法计数原理,知有A13·A44=72(个).答案:D12.航天员在进行一项太
空实验时,先后要实施6个程序,其中程序B和C都与程序D不相邻,则实验顺序的编排方法共有()A.216种B.288种C.180种D.144种解析:当B,C相邻,且与D不相邻时,有A33A24A22=144种方法;当B,C不相邻,且都与D不相邻时,有A33A3
4=144种方法,故共有288种编排方法.答案:B13.将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有________种(用数字作答).解析:按C的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的
,所以只看左的情况最后乘以2即可.当C在左边第1个位置时,有A55种,当C在左边第2个位置时有A24·A33种,当C在左边第3个位置时,有A23·A33+A22·A33种.这三种情况的和为240种,乘以2得480.则不同的排法共有480种.答
案:48014.在某艺术馆中展出5件艺术作品,其中不同的书法作品2件,不同的绘画作品2件,标志性建筑设计1件,在展台上将这5件作品排成一排,要求2件书法作品必须相邻,2件绘画作品不能相邻,则展出这5件作品的不
同方案有________种.解析:把2件书法作品当作一个元素,与其他3件艺术品进行全排列,有2A44=48种方案.其中,2件绘画作品相邻,有2×2A33=24种方案,则该艺术馆展出这5件作品的不同方案有48-24=24种
.答案:2415.某次文艺晚会上共演出8个节目,其中2个唱歌、3个舞蹈、3个曲艺节目,求分别满足下列条件的节目编排方法有多少种?(1)一个唱歌节目开头,另一个放在最后压台;(2)2个唱歌节目互不相邻;(3)2个唱歌节目相邻且3个舞蹈节目不相邻.解析:(1)先排唱歌节目有A22种排法,再排其他节目有
A66种排法,所以共有A22·A66=1440种排法.(2)先排3个舞蹈节目,3个曲艺节目有A66种排法,再从其中7个空(包括两端)中选2个排唱歌节目,有A27种插入方法,所以共有A66·A27=30240种排法.(3)把
2个相邻的唱歌节目看作一个元素,与3个曲艺节目排列共A44种排法,再将3个舞蹈节目插入,共有A35种插入方法,最后将2个唱歌节目互换位置,有A22种排法,故所求排法共有A44·A35·A22=2880种排法.16.从1到9这9个数字中取出不同的5个数进行排列
.问:(1)奇数的位置上是奇数的有多少种排法?(2)取出的奇数必须排在奇数位置上有多少种排法?解析:(1)奇数共5个,奇数位置共有3个;偶数共有4个,偶数位置有2个.第一步先在奇数位置上排上奇数共有A35种排法;第二步再排偶数位置,有4个偶数和余下的2个奇
数可以排,排法为A26种,由分步乘法计数原理知,排法种数为A35·A26=1800.(2)因为偶数位置上不能排奇数,故先排偶数位,排法为A24种,余下的2个偶数与5个奇数全可排在奇数位置上,排法为A37种,由分步乘法计数原理知,排法种数为A24·A37=2520种.获得更多资源请扫码加入享学资源
网微信公众号www.xiangxue100.com