【文档说明】贵州省2022届高三上学期8月联考试题 数学(理)含解析.doc,共(10)页,2.107 MB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-b34eccb8eae13b05441bfb88b799e7a3.html
以下为本文档部分文字说明:
1高三数学考试(理科)考生注意:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分,共150分。考试时间120分钟。2.请将各题答案填写在答题卡上。3.本试卷主要考试内容:高考全部内容。第I卷一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个
选项中,只有一项是符合题目要求的。1.已知集合A={1,2,3},B={x∈N|x≤2},则A∪B=A.{2,3}B.{0,1,2,3}C.{1,2}D.{1,2,3}2.24ii−=A.-4-2iB.-4+2iC
.-2-4iD.4-2i3.设a=e0.01,b=logπe,c=ln1,则A.a>c>bB.a>b>cC.b>a>cD.c>a>b4.《周髀算经》中有这样一个问题:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,自冬至日起,其日影
长依次成等差数列,立春当日日影长为9.5尺,立夏当日日影长为2.5尺,则春分当日日影长为A.4.5尺B.5尺C.5.5尺D.6尺5.函数f(x)=13x3-3x2+8x-133的极大值点为A.1B.2C.4D.736.象棋,亦作“象暮”、中国象棋,中国传统棋类
益智游戏,在中国有着悠久的历史,属于二人对抗性游戏的一种。由于用具简单,趣味性强,象棋成为流行极为广泛的棋艺活动。中国象棋是中国棋文化也是中华民族的文化瑰宝。某棋局的一部分如图所示,若不考虑这部分以外棋子的影响,且“马”和“炮”不动,“兵”只能往前走或左右走,每次只能走一格,从“兵
”“吃掉”“马”的最短路线中随机选择一条路线,则该路线能顺带“吃掉”“炮”的概率为2A.13B.12C.35D.347.如图,在正三棱柱ABC-A1B1C1中,AC=CC1,P是A1C1的中点,则异面直线BC与AP所成角的余弦值为
A.0B.13C.55D.5108.函数f(x)=211axx++的大致图象不可能是9.在(x-2ax)5的展开式中,x2的系数是-10,则a=A.-2B.-1C.1D.210.函数f(x)=3sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|<2)的部分图象如图所示,则φ=A.
6B.-3C.-6D.311.已知双曲线C:22221xyab−=(a>0,b>0)的左右焦点分别为F1,F2,直线x-c=0与双曲线C的一个交点为点P,与双曲线C的一条渐近线交于点Q,O为坐标原点,若3212OPOFOQ33=+,则双曲线C的
离心率为A.2B.355C.5D.312.如图,E是正方体ABCD-A1B1C1D1棱DD1的中点,F是棱B1C1上的动点,现有下列命题:①存在点F使得CF⊥EB;②存在点F使得D1F//BE;③存在点F使得△BEF的正视图和侧视图的面积相等;④四面体EBFC的体积为定值。其中所有正确命题的
序号为A.①③④B.①③C.③④D.①②④第II卷二、填空题:本大题共4小题,每小题5分,共20分。把答案填在答题卡中的横线上。13.向量a=(3,x),b=(4,2)。若a⊥b,则x=。14.已知等比数列{an}的公比q>
0,其前n项和为Sn,且S2=6,S3=14,则a1=。15.已知实数x,y满足2xy2xy2xy1−+−−,则z=yx2+的最大值为。16.已知圆C:x2+(y+1)2=16,P是圆C上的动点。若A(0,1),线段PA的垂直平分
线与直线PC相交于点Q,则点Q的轨迹方程是;若M(2,1),则|MQ|+|QC|的最大值为。(本题第一空3分,第二空2分)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、
23题为选考题,考生根据要求作答。(一)必考题:共60分。17.(12分)三角测量法是在地面上选定一系列的点,并构成相互连接的三角形,由已知的点观察各方向的水平角,再测定起始边长,以此边长为基线,即可推算各点
坐标的一种测量方法。在实际测量中遇到高大障碍物的测量,需要跨越时的测量,无法得到平距的测量都需要用到三角测量法。如图,为测量横截面为直角三角形的某模型的平面图△ABC,由于实际情况,Rt△4ABC(∠ACB=2)的边和角无法测量,以下为可测量数据:
①BD=2;②CD=3+1;③∠BDC=6;④∠BCD=4。以上可测量数据中至少需要几个可以推算出Rt△ABC的面积?请选择一组并写出推算过程。注:若选择不同的组合分别作答,则按第一个作答计分。18.(12分)如图,在三棱锥P-ABC中,△ABC为等边三角形,PA=
AB=2,PB=PC=22。(1)证明:BC⊥PA。(2)若PQ2QC=,求二面角B-AQ-C的余弦值。19.(19分)数独是源自18世纪瑞士的一种数学游戏,玩家需要根据9×9盘面上的已知数字,推理出所
有剩余空格的数字,并满足每一行、每-列、每一个粗线宫(3×3)内的数字均含1~9,且不重复。数独爱好者小明打算报名参加“丝路杯”全国数独大赛初级组的比赛。(1)赛前小明在某数独APP上进行了一段时间的训练,每天解题的平均速度y(秒/题)与
训练天数x(天)有关,经统计得到如下数据:现用y=a+bx作为回归方程模型,请利用表中数据,求出该回归方程(a,b用分数表示)。(2)小明和小红在数独APP上玩“对战赛”,每局两人同时开始解一道数独题,先解出题的人获胜,
不存在平局,两人约定先胜3局者赢得比赛。若小明每局获胜的概率为23,且各局5之间相互独立,设比赛X局后结束,求随机变量X的分布列及期望。参考数据(其中t;=1ix):参考公式:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线vu
=+的斜率和截距的最小二乘估计分别为1221,niiiniiuvnuvvuunu==−==−−20.(12分)已知函数f(x)=(x2-2ax)lnx+ax。(1)若曲线y=f(x)在x=1处的切线与直线2x
-y+1=0平行,求实数a的值;(2)当x∈(0,e)时,f(x)≥0恒成立,求实数a的取值范围。21.(12分)已知抛物线C:x2=2py(p>0)上的点P(x0,1)到其焦点F的距离为2。(1)求抛物线C的方程及点F的坐标。(2)过抛物线C上一点Q作
圆M:x2+(y-3)2=4的两条斜率都存在的切线,分别与抛物线C交于异于点Q的A,B两点。证明:直线AB与圆M相切。(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22.[选修4-4:坐标系与
参数方程](10分)在直角坐标系xOy中,曲线C1的参数方程为x12cosy12sin=+=−+(α为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρsin(4-θ)=22。(1)求曲线C1的普通方程与曲线C2的直角坐标方程;
(2)设点M(1,0),若曲线C1,C2相交于A,B两点,求11MAMB+的值。623.[选修4-5:不等式选讲](10分)已知函数f(x)=|x-4|。(1)求不等式f(x)+f(5-x)≤5的解集;(2)设函数g(x)=f(x)-f(x+2)的最大值为M。若a+b=M,且a>0,b>0,
求11a14b4+++的最小值。78910