福建省福州第八中学2022-2023学年高二上学期期末考试数学试题 PDF版含解析

PDF
  • 阅读 0 次
  • 下载 0 次
  • 页数 9 页
  • 大小 786.947 KB
  • 2024-09-28 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
福建省福州第八中学2022-2023学年高二上学期期末考试数学试题 PDF版含解析
可在后台配置第一页与第二页中间广告代码
福建省福州第八中学2022-2023学年高二上学期期末考试数学试题 PDF版含解析
可在后台配置第二页与第三页中间广告代码
福建省福州第八中学2022-2023学年高二上学期期末考试数学试题 PDF版含解析
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的6 已有0人购买 付费阅读2.40 元
/ 9
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】福建省福州第八中学2022-2023学年高二上学期期末考试数学试题 PDF版含解析.pdf,共(9)页,786.947 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-ad634a952dd78fd1ed8f6c8834d6f64c.html

以下为本文档部分文字说明:

福州八中2022-2023学年第一学期期末考试高二数学命题:欧阳师章审核:陈达辉校对:江莹辉考试时间:120分钟总分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知空间四面体OABC中,对空间内任一点M,满足114

6OMOAOBOC下列条件中能确定点,,,MABC共面的是A.12B.13C.512D.7122.以椭圆221259xy的左焦点为焦点的抛物线的标准方程是A.216yxB.28

yxC.216yxD.216xy3.2022年2月,第24届冬季奥林匹克运动会在北京隆重举行,中国代表团获得了9金4银2铜的优异成绩,彰显了我国体育强国的底蕴和综合国力.设某高山滑雪运动员在一次滑雪训练中滑行的路程l(单位:m)与时间

t(单位:s)之间的关系为2322lttt,则当3st时,该运动员的滑雪速度为A.7.5m/sB.13.5m/sC.16.5m/sD.22.5m/s4.已知双曲线22221(0,0)xyabab的离心率为22,则该双曲线的渐近线方程为A.

70xyB.70xyC.30xyD.30xy5.数列na满足*331log1logNnnaan,且1359aaa,则13579logaaaA.4B.14C.2D.126.若直线:40lxmy与曲线

24xy有两个交点,则实数m的取值范围是A.303mB.303mC.03mD.03m7.在数列na中,111,11Nnnannaan,则2022aA.404320

22B.20212022C.40402021D.202020218.已知1ln2a,2eb,343e4c(其中e为自然常数),则a、b、c的大小关系为A.acbB.bacC.cbaD.c

<a<b二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列结论正确的是A.若2,3,3,2,1,A

BCm三点共线,则m的值为0;B.已知两点3,4,3,2AB,过点1,0P的直线l与线段AB有公共点,则直线l的斜率k的取值范围为11k;C.圆224xy上有且仅有3个点到直线:20lxy

的距离都等于1;D.与圆22(2)2xy相切,且在x轴、y轴上的截距相等的直线有三条.10.已知F1,F2分别是椭圆C:22195xy的左,右焦点,P为椭圆C上异于长轴端点的动点,则下列结论正确的是A.12PFF△的

周长为10B.12PFF△面积的最大值为25C.1||PF的最小值为1D.椭圆C的焦距为611.已知数列na满足*1121,(N)321nnnaaana,则下列结论正确的是A.12na

为等比数列B.na的通项公式为1221nnnaC.na为递减数列D.1na的前n项和212nnTn12.在长方体1111ABCDABCD中,1222AAABBC,点,EF满足1(01)AF

AA,1CEEC.下列结论正确的有A.若直线BE与1DF异面,则12B.若AEBF,则13C.直线AE与平面11ABCD所成角正弦值为1515D.若直线AE//平面1BFD,则14三、填空题:本题共4小题,每小

题5分,共20分.13.已知lnfxxxx,则fx在x=1处的切线方程是______.14.已知椭圆22:1167xyE的右焦点F,P是椭圆E上的一个动点,Q点坐标是(1,3),则||||PQPF

的最大值是______.15.已知数列na的各项均为正数,12a,221120nnnnaaaa,则数列111nnnaaa前10项的和为___________.16.过双曲线2222100xyabab(,)的左焦点(0Fc,)作圆x²+y

²=a²的切线,切点为E,延长FE交抛物线y²=4cx于点P,O为坐标原点,若12OEOFOP,则双曲线的离心率为_______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)

设等差数列na的各项均为正数,其前n项和为nS,*141nnnaSanN.(1)求na的通项公式;(2)设5nnab,求数列nb的前10项和,其中x表示不超过x的最大整数,如0.90,2.62.18.(12分)矩形ABCD的

两条对角线相交于点2,0M,AB边所在直线的方程为360xy,点1,1T在AD边所在直线上.(1)求AD边所在直线的方程;(2)求矩形ABCD外接圆的方程;(3)若点P为矩形ABCD外接圆上一动点,求点1,1T与点P距离的最小值

.19.(12分)新冠肺炎疫情期间,某企业生产的口罩能全部售出,每月生产x万件(每件5个口罩)的利润函数为23145,07,3e12ln,7xxxpxxxx(单位:万元).(注:每问结果精确到小数点后两位.参考数据2e7.39,3e

20.09)(1)当每月生产5万件口罩时,利润约为多少万元?(2)当月产量约为多少万件时,生产的口罩所获月利润最大?20.(12分)如图所示,正方形ABCD所在平面与梯形ABMN所在平面垂直,ANBM∥,2ANABBC,4BM,23CN.(

1)证明:BM平面ABCD;(2)在线段CM(不含端点)上是否存在一点E,使得二面角EBNM的余弦值为33.若存在,求出的CEEM值;若不存在,请说明理由.21.(12分)已知椭圆2222:10xyCabab

的离心率为22,以原点为圆心,椭圆的短半轴长为半径的圆与直线20xy相切.(1)求椭圆C的方程;(2)设2,0A,过点1,0R作与x轴不重合的直线l交椭圆C于M,N两点,连接AM,AN

分别交直线3x于P,Q两点,若直线PR、QR的斜率分别为1k、2k,试问:12kk是否为定值?若是,求出该定值,若不是,请说明理由.22.(12分)已知函数2e23xfxxaxa

(1)已知fx在R上为单调递增,求a的取值范围;(2)若fx在0,2有两个极值点12,xx,求证:2124efxfx.福州八中2022-2023学年第一学期期末考试数学试卷参考答案一、单项选择题:本题共8

小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D2.C3.B4.A5.C6.B7.A8.D二、多项选择题:本题共4小题,每小题5分,共20分。在每小题给出的四个选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。9

.ACD10.AB11.AB12.ACD三、填空题:本题共4小题,每小题5分,共20分。13.32yx14.1315.682204916.512四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。17.(10分)【解】(1)设等差数列公差为d,因为*141n

nnaSanN,所以当2n时,1141nnnSaa,所以1114411nnnnnnaaSSaa,················2分所以114nnnnnaaaaa,因为0na,所以1124nnaad,所以2d,·········

···················4分令1n得1121141(2)1aaaaa整理得211210aa解得11a,所以12(1)21nann.······························································

6分(2)由(1)得215nnb,所以215nnb的前10项和等于1357111315195555557559155

001112233316··················································10分18.(12分)【解】(1)AD边所在直线与AB边所

在直线垂直,所以1ADABkk,因为AB边所在直线的方程为360xy,即13ABk,所以3ADk,·········2分又因为点1,1T在AD边所在直线上,所以AD边所在直线的方程为:131yx,化简为:320xy········

·································································4分(2)AB边所在直线与AD边所在直线相交于点A,联立得:320360xyxy

,解得:02xy,即0,2A,······························6分所以矩形ABCD外接圆的半径4422rMA,·················

···············7分所以矩形ABCD外接圆的方程为:2228xy·····································8分(3)因为||10,22TMr.||TMr,点T在圆外.所以||TP最小值为||TMr=1

022···················································12分19.(12分)【解】(1)当5x时,2120554556.6733p,故当每月生产5万件口罩时,利润约为6.67万元······

·································3分(2)因为利润函数为23145,07,3e12ln,7xxxpxxxx故当221107,()

456373xpxxxx,此时当max6,()7xpx.······································································6分当7x时,3e12ln

,pxxx3322ee,1xxxpxx······························8分当37e,()0,xpx此时()px单调递增,当3e,()0,xpx此时()px单调递减,故当3e20.09x时,33max3e()12lne1231

8epx··························11分综上,当20.09x时,所获月利润最大.··················································12分20.(12分)【解】(1)证明:正方形A

BCD中,BCAB,平面ABCD平面ABMN,平面ABCD平面ABMNAB,BC平面ABCD,BC平面ABMN,··························································

··············2分又BM平面ABMN,BCBM,且BCBN,又2,23BCCN,2222BNCNBC,又2ABAN,222BNABAN,············

·····································3分ANAB,又//ANBM,BMAB,又,,BCBABBABC平面ABCD,BM平面ABCD;············································

···························5分(2)解:如图,以B为坐标原点,,,BABMBC所在直线分别为,,xyz轴建立空间直角坐标系,则0,0,0,2,0,0,0,0,2BAC,2,0,2,2,2,0,0,4,0DNM,············

·····6分设点,,Eabc,01CECM,,,20,4,2abc,04,0,4,2222abEc,2,2,0,0,4,22BNBE,设平面BEN的法向量为,,mxyz,

2204220BNmxyBEmyz,令221,1,,1,1,11xyzm,·······························

············8分显然,平面BMN的法向量为0,0,2BC,·············································9分2431cos,32221BCmBCmBCm

,即2223133214,即223642,即23210,解得13或1(舍),·············································11分所以存在一点E,且12CEEM.···

·····························································12分21.(12分)【解】(1)由题意得222222200211ceababc,解得222abc,故椭

圆C的方程为22142xy;·····························································5分(2)设直线l的方程为1xmy,11,Mxy,22,Nxy,由221142xmyxy得222

230mymy,···············································6分∴12222myym,12232yym,由A、M、P三点共线可知11322Pyyx,∴1152Pyyx··

··················································································8分同理可得:2252Qyyx,·······································

······························9分故121212551131314422QPPQyyyykkyyxx121221212122525433439yyyymymymyymyy22222325251252364462492

2mmmmm,因此1k、2k为定值2524.········································································12分22.(12分)【解】(1)由22e2

3,Rfxxaxax,求导得22e2322e1xxfxxaxaxaxax,··············2分因为fx在R上为单调递增,故22e2322e10xxfxxaxaxaxax

···········3分在R上恒成立,易知e0x恒成立,所以210xax在R上恒成立,···················································

····4分由240a时,即22a,此时0fx,则fx在R上单调递增;所以22a.·······································································

···········5分(2)fx在0,2上由两个极值点12,xx,2a或2a,且12,xx为方程210xax的两个根,即12xxa,121xx,······························

·······································6分12,0,2xx,20010,a且22210a,即522a,1222121122e23e23xxfxfxxaxaxaxa12221

11222e122122xxxaxxaxaxxa1212e2222xxxaxa1221212e4222xxxxaxxa将12xxa,121xx代入上式,可得:

222e4222e42444aaaaaaaaa2e8aa,···············································································

··9分由题意,需证2212e84eafxfxa,令2e8,agaa522a,求导得2e82e24aagaaaaa,当522a时,0ga

,则ga在2,上单调递减,························11分即224egag,故2124efxfx.································

···········································12分

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 326073
  • 被下载 21
  • 被收藏 0
相关资源
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?