【文档说明】河南省非凡吉创2022届高三上学期9月模拟调研理科数学试题(2021.9.2) 答案.pdf,共(6)页,254.708 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-aaf00d52584948e9a6c6e75826bcc151.html
以下为本文档部分文字说明:
【理科数学参考答案(第1页共6页)】非凡吉创高三年级八月模拟调研卷理科数学参考答案1.【答案】B【解析】由题意,{}M05xx=<<,{}2,4MN∴=,故选B.2.【答案】B【解析】22(1)22112iiiziiii−=−=−=−++,2z∴=.3.【答案】C【解析】由递推关
系求得裴波纳契数列前若干项:1,1,2,3,5,8,13,21,34,,故9111034aaa==−,10m∴=.4.【答案】C【解析】0.30.60.501111()()()()93331ba==<=<=,而11331log0.
3log13c=>=,故cab>>.5.【答案】C【解析】由()()fxfx−=可知,函数为偶函数,排除A,又对任意的,()0xRfx∈>,排除B,分析幂函数和指数函数的变化趋势,当x→+∞时,f(x)0→,故答案为C6
.【答案】B【解析】(2)aab⊥−,故22cos600oaabab−⋅=⇒=1ab⇒=.7.【答案】B【解析】执行右图的程序框图是:111111111111115112233445562233445566
S=++++=−+−+−+−+−=⋅⋅⋅⋅⋅.8.【答案】D【解析】连接AC,设ABC面积为S则SSSACMCDE==,MAEMCDSS==512S−,故所求概率为:25122SSSS=−++555−.9.【答案】D【解析】2343422511(1)(
3)201Saqqqqaqqqqq=++++<++⇒+−<⇒<,与0q≠,得:10q−<<或01q<<.10.【答案】D【解析】设AxyBxy(,),(,)1122由题意知:(2,0)F,直线AB方程为:2yx=−代入yxxxx222828=⇒−=⇒()-12x+4
=0,故1212xx+=,由112AFAAx==+,122BFBBx==+,得:AB=12416xx++=,直角梯形的高112822ABAB==,故SAABB11【理科数学参考答案(第2页共6页)】=121(AA+BBAB111)⋅=121682⋅⋅=642.11【答案】B
【解析】由余弦函数性质:coscos()cosxxx=−=可得:fxxxx122()coscos()sin=−=−=ππ可得:①正确,②错误;221cos2()sin2xfxx−==,可得:④正确.12.【答案】A【解析】1111'()nnnnPPnnnyykfxxx++++−==−,即3
2322111113(3)36nnnnnnnnxxxxxxxx+++++−−−=−−,即332221111111()3()36(23)()0nnnnnnnnnnnnxxxxxxxxxxxx+++++++−−−=−⇒+−−=−,1nnxx+≠,1230nnxx++−=,即1113
11(1)222nnnnxxxx++=−+⇒−=−−,{}1nx∴−是等比数列,故111111(1)()2()22nnnxx−−−=−−=⋅−,1112()2nnx−∴=+⋅−,1019121011()1129012102[1()()]1021222561()2xxx−−+++=++−++−=+
⋅=−−.13.【答案】4【解析】画出满足条件对应的可行域如图中阴影部分,目标可化为2yxz=−+,由对应斜率与截距可知:z最大值时的最优解为(1,2)A,故4z=.14.【答案】1【解析】设正方体的棱长为x,
则1121111113326ABADAABDABDVVAASxxx−−∆==⋅=⋅=⇒=.15.【答案】324【解析】23MFakc=−,由题意可知:222231399()abcbcbcaca−⋅=−⇒
=⇒==−22298cea⇒==,eca==324.16.【答案】见解析【解析】甲队1号可能被淘汰在第1、2、3场,则2号结束比赛的概率可分为3个互斥事件:0.50.70.50.3+0.50.60.50.3+0
.50.40.70.3×××××××××=0.50.3(0.350.30.28)××++0.1395=17.【答案】(1)60C∠=;(2)3cos2B=.【解析】(1)222sinsinsinsina
AbBcCbAabcab+=+⇒+=+,故cosC=222221222abccabcabab+−+−==,故60C∠=.····························(4分)(2)由333sinsin3sinsin(120)sin22abcA
BCBB+=⇒+==⇒−+=,【理科数学参考答案(第3页共6页)】化简得:333sincos222BB+=,即3sin(30)2B+=,3060B∴+=或120,即30B=或90,由abAB>⇒>,可知:90B=不合题意,
故30B=,3cos2B=.·························(10分)18.【答案】(1)3件、4件、5件;(2)E(X)=12.【解析】(1)由30:40:503:4:5=,可设从1号、2号和3号机器生产的产品中,按分层抽样方法分别抽
取3x、4x、5x,由题意,34512xxx++=,得1x=,所以从1号、2号和3号机器生产的产品中分别抽取3件、4件、5件.·········(6分)(2)032103126(0)11CCPXC⋅==
=,122103129(1)22CCPXC⋅===,212103121(2)22CCPXC⋅===,则分布列:X012P611922122数学期望6911()0121122222EX=×+×+×=.················(12分)19.【答案】(1)见解析;(2)60o.
【解析】连接AM,则112tantan2MACACC∠==∠,11111190oMACACCMACACAACCACA∴∠=∠⇒∠+∠=∠+∠=,1ACAM∴⊥(*),又ACBC⊥,1CCBC⊥,BC∴⊥平面
11ACCABCAM⇒⊥,与(*)式得:AM⊥平面11ABCAMAB⇒⊥.················(6分)(2)以C为原点,CA、CB、1CC方向分别为x轴、y轴、z轴的正方向建立空间直角坐标系Oxyz−,得:(2,0,0)A,(0,2,0)B,(0,0,2
)M,平面CBM的法向量为(2,0,0)CA=,设平面AMB的法向量为(,,)mxyz=,则22002200xymABxzmAM−+=⋅=⇒−+=⋅=,令1x=,得:(1,1,2)m=
,【理科数学参考答案(第4页共6页)】则21cos,222CAmmCACAm⋅<>===⋅⋅,故所求二面角ABMC−−的大小为60o.···············
·····(12分)20.【答案】(1)见解析;(2)111()2443nn+−⋅.【解析】(1)113333413311314nnnnnnnnaaaaaaaa++−−−−−÷=⋅=−−−−−,故数列31nnaa−−为等比数列.······················(6
分)(2)由(1)知:1113333331131nnnnnnnaaaaa−−−+=⋅=⇒=−−+,故1230121123123333333333(31)3(31)3(31)3(31)3131313131313131nnnnnb−++++++++=⋅⋅⋅
⋅=⋅⋅⋅⋅++++++++2331nn⋅=+,111(1)23nnb∴=+,故121211()1111111111113()()122223244333313nnnnnnnbbb−+++=++++=+⋅⋅=+−⋅−.······(12分)21.【答案】(1)22;(2)2
22102kk−=⇒=±.【解析】(1)12FDF∆为等腰直角三角形,可得:22cbca=⇒=.·························(6分)(2)椭圆方程为:222212xycc+=,即22222xyc+=,设11(,)Axy,22(,)Bxy,则1212(
,)Mxxyy++,代入椭圆方程得:2221212()2()2xxyyc+++=,即222211221212(2)(2)2(2)xyxyxxyy+++++=22c(**),由22112xy+22c=,22222xy+22c=,(**
)式可化为:12122xxyy+=2c−(***),当直线l斜率不存在时,不合题意,设直线l斜率为k,方程为:()ykxc=−代入椭圆方程并整理得:22222(12)4(22)0kxckxkc+−+−=,得:2122412ckxxk+=+,22122(22)1
2kcxxk−=+,由12122xxyy+=2c−⇒12122()()xxkxckxc+−⋅−=2c−,yOxABDMF2F1【理科数学参考答案(第5页共6页)】即22221212(12)2()(21)0kxxkcxxkc+−+++=即2222
22222(22)4(12)2(21)01212kcckkkckckk−+⋅−⋅++=++,化简得:222102kk−=⇒=±.······················(12分)22.【答案】(1)1a=;(2)见解析.【解析
】(1)()14fπ=−,4xπ∴=时,在区间(0,)2π上()fx取得最小值,可得原条件的一个必要条件:'()014faπ=⇒=,下面证充分性,当1a=时,4()12cosxfxexπ−=−−,()gx=4'()2
sinxfxexπ−=−+,4'()2cos0xgxexπ−=+>,故在区间(0,)2π上'()fx为增函数,与4'(0)0feπ=−<,4'()102feππ−=−+>,可知:'()fx在区间(0,)2π上
有唯一零点4xπ=,且在(0,)4π上,'()0fx<;在(,)42ππ上,'()0fx>.故()fx在区间(0,)2π上有最小值为()14fπ=−,综上所述1a=····························(
6分)(2)由(1)()gx=4'()2sinxfxexπ−=−+,令4()'()2cosxhxgxexπ−==+,则在区间(,)2ππ上,4'()2sin0xhxexπ−=−−<,可得:()'()hxgx=为减函数,
又4'()02geππ−=>,34'()20geππ−=−<,可得'()gx有唯一的零点,设为m,则在区间(,)2mπ上,'()0gx>,()gx是增函数,故()()'()222gmgfππ>==40eπ−−>;在区间(,)mπ上,'()0gx<,()gx是减函数,故(
)0gm>,34()0geππ−=−<.故()gx有唯一的零点,即0x,满足:0(,)2xπ上,'()()0fxgx=>;0(,)xπ上,'()()0fxgx=<.【理科数学参考答案(第6页共6页)】故0x为()fx的唯一极大值点,且
0'()fx=0044002sin02sinxxexexππ−−−+=⇒=,0400000()12cos2sin12cos2sin()114xfxexxxxππ−=−−=−−=−−≤,而034xπ≠,故0()1fx<.············
·············(12分)