【文档说明】江苏省南京市2021届高三下学期5月第三次模拟考试数学试题 含答案.doc,共(10)页,270.500 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-a79dba40cab91b9e3bb546f222b8b304.html
以下为本文档部分文字说明:
南京市2021届高三年级第三次模拟考试数学2021.05注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色
墨水签字笔填写在试卷及答题卡上.第I卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|2x<4},B={x|x2-2x-3≤0},则A∪B=A.[-1,2)B.(2,3
]C.(-1,3]D.(-∞,3]2.已知i为虚数单位,若复数z=12+32i,则复数1z的虚部为A.-32B.32C.-32iD.32i3.函数y=ln|x|+cosx的大致图象是ABCD4.将5名学生分配到A,B,C
,D,E这5个社区参加义务劳动,每个社区分配1名学生,且学生甲不能分配到A社区,则不同的分配方法种数是A.72B.96C.108D.1205.已知cos(α-π6)=34,则sin(2α+π6)+cos2(α2-
π12)的值为A.14B.12C.378D.16.声音的强弱可以用声波的能流密度来计算,叫做声强.通常人耳能听到声音的最小声强为I0=10-12(瓦/米2).对于一个声音的声强I,用声强I与I0比值的常用对数的10倍表示声
强I的声强级,单位是“分贝”,即声强I的声强级是10lgII0(分贝).声音传播时,在某处听到的声强I与该处到声源的距离s的平方成反比,即I=ks2(k为常数).若在距离声源15米的地方,听到声音的声强级是20分贝,则能听到该
声音(即声强不小于I0)的位置到声源的最大距离为A.100米B.150米C.200米D.1510米7.在正方形ABCD中,O为两条对角线的交点,E为边BC上的动点.若→AE=λ→AC+μ→DO(λ,μ>0
),xyOxyOxyOxyO则2λ+1μ的最小值为A.2B.5C.92D.1438.已知a,b,c均为不等于1的正实数,且lna=clnb,lnc=blna,则a,b,c的大小关系是A.c>a>bB.b>c>aC.a>b>c
D.a>c>b二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.面对新冠肺炎疫情的冲击,我国各地区各部
门统筹疫情防控和经济社会发展均取得显著成效.下表显示的是2020年4月份到12月份中国社会消费品零售总额数据,其中同比增长率是指和去年同期相比较的增长率,环比增长率是指与上个月份相比较的增长率,则下列说法正确
的是中国社会消费品零售总额月份零售总额(亿元)同比增长环比增长累计(亿元)428178-7.50%6.53%106758531973-2.80%13.47%138730633526-1.80%4.86%17225
6732203-1.10%-3.95%2044598335710.50%4.25%2380299352953.30%5.14%27332410385764.30%9.30%31190111395145.
00%2.43%35141512405664.60%2.66%391981A.2020年4月份到12月份,社会消费品零售总额逐月上升B.2020年4月份到12月份,11月份同比增长率最大C.2020年4月份到12月份,5月
份环比增长率最大D.第4季度的月消费品零售总额相比第2季度的月消费品零售总额,方差更小10.定义曲线Γ:a2x2+b2y2=1为椭圆C:x2a2+y2b2=1(a>b>0)的伴随曲线,则A.曲线Γ有对称轴B.曲线Γ没有对称中心C.曲线Γ有且仅
有4条渐近线D.曲线Γ与椭圆C有公共点11.已知正四棱台的上底面边长为2,下底面边长为22,侧棱长为2,则A.棱台的侧面积为67B.棱台的体积为143C.棱台的侧棱与底面所成的角的余弦值为12ABCDOEFxx2x2y图1D.棱台的侧面与
底面所成锐二面角的余弦值为7712.已知函数f(x)=3sin2x+4cos2x,g(x)=f(x)+|f(x)|.若存在x0∈R,对任意x∈R,f(x)≥f(x0),则A.任意x∈R,f(x+x0)=f(x-x0)B.任意x∈R,f(x)≤f
(x0+π2)C.存在θ>0,使得g(x)在(x0,x0+θ)上有且仅有2个零点D.存在θ>-5π12,使得g(x)在(x0-5π12,x0+θ)上单调递减第II卷(非选择题共90分)三、填空题(本大题共4小题
,每小题5分,共20分)13.(3x2+1x3)5的展开式中的常数项为▲________.14.写出一个离心率为5,渐近线方程为y=±2x的双曲线方程为▲________.15.早在15世纪,达·芬奇就曾提出一种制作正二十面体的方法:如图1,先制作三张一样的黄金矩形ABCD(短边长边=5-12),
然后从长边CD的中点E出发,沿着与短边平行的方向剪开一半,即OE=12AD,再沿着与长边AB平行的方向剪出相同的长度,即OF=OE,将这三个矩形穿插两两垂直放置,连结所有顶点即可得到一个正二十面体,如图2.若黄金矩形的短边长为4,则按如上制作的正二十面体
的表面积为▲________,其外接球的表面积为▲________.16.已知直线y=kx+b与曲线y=x2+cosx相切,则kπ2+b的最大值为▲________.四、解答题(本大题共6小题,共70分.解答时应
写出文字说明、证明过程或演算步骤)17.(本小题满分10分)图2已知四边形ABCD中,AC与BD交于点E,AB=2BC=2CD=4.(1)若∠ADC=2π3,AC=3,求cos∠CAD;(2)若AE=CE,BE=
22,求△ABC的面积.18.(本小题满分12分)已知等差数列{an}满足:a1+3,a3,a4成等差数列,且a1,a3,a8成等比数列.(1)求数列{an}的通项公式;(2)在任意相邻两项ak与ak+1(k=1,2,…)之间插入2k
个2,使它们和原数列的项构成一个新的数列{bn}.记Sn为数列{bn}的前n项和,求满足Sn<500的n的最大值.19.(本小题满分12分)如图,在四棱锥P-ABCD中,四边形ABCD为直角梯形,AD∥BC,∠ABC=90º,AD=
2BC=2AB=4,△PAD为等边三角形,E为PD的中点,直线AB与CE所成角的大小为45º.(1)求证:平面PAD⊥平面ABCD;(2)求平面PAB与平面PCD所成角的正弦值.20.(本小题满分12分)某乒乓球教练为了解某同学近期的训练效果,随机记录了该同学40局接
球训练成绩,每局训练时教PEDACB(第19题图)练连续发100个球,该同学接球成功得1分,否则不得分,且每局训练结果相互独立,得到如图所示的频率分布直方图.(1)若同一组数据用该区间的中点值作代表,①求该同学40局接球训练成绩的样本平均数x-;②若该同
学的接球训练成绩X近似地服从正态分布N(μ,100),其中μ近似为样本平均数x-,求P(54<X<64)的值;(2)为了提高该同学的训练兴趣,教练与他进行比赛.一局比赛中教练连续发100个球,该同学得分达到80
分为获胜,否则教练获胜.若有人获胜达3局,则比赛结束,记比赛的局数为Y.以频率分布直方图中该同学获胜的频率作为概率,求E(Y).参考数据:若随机变量ξ~N(μ,σ2),则P(μ-σ<ξ<μ+σ)≈0.6827,P(μ-2σ<ξ<μ+2σ)≈0.9545,P(
μ-3σ<ξ<μ+3σ)≈0.9973.21.(本小题满分12分)在平面直角坐标系xOy中,已知抛物线C:y2=4x,经过P(t,0)(t>0)的直线l与C交于A,B两点.(1)若t=4,求AP长度的最小值;(2)设以AB
为直径的圆交x轴于M,N两点,问是否存在t,使得→OM·→ON=-4?若存在,求出t的值;若不存在,请说明理由.22.(本题满分12分)已知函数f(x)=a-exx+alnx,a∈R.(1)若a<e,求函数
f(x)的单调区间;(2)若a>e,求证:函数f(x)有且仅有1个零点.南京市2021届高三年级第三次模拟考试数学参考答案及评分标准一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符O5060708090100
分数频率组距0.0050.0100.0200.045(第20题图)合题目要求的.1.D2.A3.C4.B5.D6.B7.C8.A二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.
全部选对的得5分,部分选对的得2分,有选错的得0分.9.BCD10.AC11.ACD12.BD三、填空题:本大题共4小题,每小题5分,共20分.13.27014.x2-y24=1(答案不唯一)15.803,(40+85)π16.
π24四、解答题:本大题共6小题,共70分.17.(本题满分10分)解:(1)在△ACD中,由正弦定理,得ACsin∠ADC=CDsin∠CAD,所以sin∠CAD=CDsin∠ADCAC=2×sin2π33=33.·····································
·····2分因为0<∠CAD<π3,因此cos∠CAD=1-sin2∠CAD=1-(33)2=63.·································4分(2)方法1设AE=CE=x,
∠AEB=α.在△ABE中,8+x2-42xcosα=16.①在△BCE中,8+x2-42xcos(π-α)=4,即8+x2+42xcosα=4.②··············6分①②相加,解得x=2,
即AE=CE=2.···············································8分将x=2代入①,解得cosα=-34.因为0<α<π,所以sinα=1-cos2α=74,所以△ABC的面积S△AB
C=2S△ABE=2×12AE×BE×sinα=2×(12×2×22×74)=7.······························10分方法2因为AE=CE,所以→BE=12(→BA+→BC),两边平方得4→BE2=→BA2+
→BC2+2|→BA|·|→BC|cos∠ABC,即32=16+4+2×4×2cos∠ABC,得cos∠ABC=34,又0<∠ABC<π,所以sin∠ABC=1-cos2∠ABC=74.···········································
··········8分所以△ABC的面积S△ABC=12AB·BC·sin∠ABC=12×4×2×74=7.················10分18.(本题满分12分)解:(1)设数列{an}的公差为d,因为a
1+3,a3,a4成等差数列,所以2a3=a1+3+a4,即2(a1+2d)=a1+3+a1+3d,解得d=3,·································································
·······················2分因为a1,a3,a8成等比数列,所以a32=a1a8,即(a1+6)2=a1(a1+21),解得a1=4,····················································
···································4分所以an=4+3(n-1)=3n+1.·································································5分(2)因为bn>0,所以{Sn}是单调递增数列.
·················································6分因为ak+1前的所有项的项数为k+21+22+…+2k=k+2k+1-2,所以Sk+2k+1-2=(a1+a2+…
+ak)+2(21+22+…+2k)=k(4+3k+1)2+2×2(1-2k)1-2=3k2+5k2+2k+2-4.····················8分当k=6时,S132=321<500;当k=7时,S261=599>50
0.··························10分令S132+a7+2(n-133)<500,即321+22+2(n-133)<500,解得n<211.5.所以满足Sn<500的n的最大值为211.
···················································12分19.解:(1)取AD中点O,连接CO,OE.在梯形ABCD中,因为AD∥BC,AD=2BC,所以四边形ABCO为
平行四边形,所以CO∥AB,所以∠OCE即为异面直线AB与CE所成的角或补角.··································2分在等边△PAD中,因为E为PD的中点,所以OE=12PA=12AD
=2.在△OCE中,OC=AB=2,即OE=OC=2,所以∠OCE为锐角,从而∠OCE=∠OEC=45°,所以∠COE=90°,即OC⊥OE.···························································4分因为∠ABC=90º,
所以四边形ABCO为矩形,所以OC⊥AD.又AD∩OE=O,AD,OE平面PAD,所以OC⊥平面PAD.又因为OC平面ABCD,所以平面PAD⊥平面ABCD.·······························6分(2)连接PO,在等边△PAD
中,因为O为AD中点,所以PO⊥AD.由(1)得OC⊥平面PAD,PO平面PAD,所以OC⊥PO.以O为原点,OC,OD,OP所在直线分别为x,y,z轴,建立如图所示的空间直角坐标系O-xyz,Pz则A(0,-2,0),C(2,0,0),D(0,2,0),B(2,-2,0),P(
0,0,23),故→AP=(0,2,23),→AB=(2,0,0),→PD=(0,2,-23),→CD=(-2,2,0).设平面PAB的法向量为m=(x,y,z),由m·→AP=2y+23z=0,m·
→AB=2x=0,不妨取z=1,得m=(0,-3,1).·······················································8分设平面PCD的法向量为n=(x,
y,z),由n·→PD=2y-23z=0,n·→CD=-2x+2y=0,不妨取z=1,得n=(3,3,1).············································
············10分所以cos<m,n>=m·n|m|·|n|=-77.所以平面PAB与平面PCD的所成角的正弦值为427.···························12分20.(本小题满分12分)解:(1)①
x-=55×0.1+65×0.2+75×0.45+85×0.2+95×0.05=74.···················2分②由(1)得μ=x-=74,所以X~N(74,100),得P(54<X<94)≈0.9
545,P(64<X<84)≈0.6827,······························4分所以P(54<X<64)=0.9545-0.68272=0.1359.······················
················6分(2)记“该同学每局获胜”为事件A,则P(A)=(0.02+0.005)×10=14.············7分Y的可能取值为3,4,5,P(Y=3)=(14)3+(34)3=716,·····
································································8分P(Y=4)=C23×(14)2×34×14+C23×(34)2×14×34=45128,···································
···9分P(Y=5)=C24×(14)2×(34)2×14+C24×(34)2×(14)2×34=27128.·······························10分因此E(Y)=3×716+4×45128+5×27128=483128.·······················
······················12分21.(本题满分12分)解:(1)设A(x1,y1),则AP2=(x1-4)2+y12=x12-8x1+16+4x1=x12-4x1+16,·······2分当x1=2时,(AP2)min=12,故AP长度的最小值为23.···········
··················4分(2)由l不与x轴重合,故可设直线l:x=my+t,A(x1,y1),B(x2,y2),EDACBOxy联立x=my+t,y2=4x,得y2-4my-4t=0,所以
y1+y2=4m,y1y2=-4t.·······························································6分以AB为直径的圆方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0,令y=0,得(x-x1)(x-x2)+y1y2=
0,即x2-(x1+x2)x+x1x2+y1y2=0.设M(x3,y3),N(x4,y4).则x3x4=x1x2+y1y2.·············································································8分于是→OM
·→ON=x3x4=x1x2+y1y2=y12y2216+y1y2=t2-4t.·································10分令t2-4t=-4,解得t=2,此时Δ=16(m2+2)>0,所以存在t=2,使得→
OM·→ON=-4.·······················································12分22.(本题满分12分)(1)解:因为f(x)=a-exx+alnx,x>0,所以f'(x)=-(x-1)(ex-a)x2.···········
·········1分①当a≤1时,令f'(x)<0,得x>1;令f'(x)>0,得0<x<1.·················2分②当1<a<e时,令f'(x)<0,得0<x<lna或x>1;令f'(x)>0,得lna<x<1.························
·············································································3分因此,当a≤1时,f(x)的减区间为(1,+∞),增区间为(0,1);当1<a<
e时,f(x)的减区间为(0,lna)和(1,+∞),增区间为(lna,1).·····························································································4分(2)证明:当a
>e时,令f'(x)<0,得0<x<1或x>lna;令f'(x)>0,得1<x<lna.所以f(x)的减区间为(0,1)和(lna,+∞);增区间为(1,lna),····················6分所以当x∈(0,lna]时,f(x)≥f(
1)=a-e>0,此时f(x)无零点.··················7分方法1下面证明:当x>0时,ex>x33.设g(x)=ex-x33,x>0,则g'(x)=ex-x2,g''(x)=ex-2x,g'''(x)=ex-2.当x∈(0,ln2),g'''(x)<0,所以g''(x)单调
递减;当x∈(ln2,+∞),g'''(x)>0,所以g''(x)单调递增;因此g''(x)≥g''(ln2)=2-2ln2>0,故g'(x)在(0,+∞)上单调递增.因此g'(x)>g'(0)=1>0,故g(x)在(0,+∞)上单调递增.所以g(x)>g(
0)=1>0,即不等式ex>x33(x>0)得证.································9分由于x>0时,由g''(x)>0,知ex>2x>x,故lnex>lnx,即lnx<x.············10分因此,当x>lna>1时,f(x)=a-
exx+alnx<a-13x3x+ax=-13x2+ax+ax<-13x2+ax+a,令-13x2+ax+a=0,得x=3a+9a2+12a2=a+a+9a2+12a2>lna,取x0=3a+9a2+12a2,则f(x
0)<0.又f(lna)>f(1)>0,且函数f(x)在[lna,+∞)上单调递减,f(x)的图象不间断,故当x∈[lna,+∞)时,f(x)有且仅有1个零点.综上,当a>e时,函数f(x)有且仅有1个零点.································
····12分方法2先证明:ex≥e3x327(x>0).令g(x)=ex-ex,x>0,因为g'(x)=ex-e,所以g(x)在(0,1)上递减,在(1,+∞)上递增,所以g(x)min=g(1)=0,所以g(x)=ex-ex
≥0,即ex≥ex,当且仅当x=1时取等号.将x换作x3,得ex3≥e·x3,即证得ex≥e327x3.···············································9分再证
明:当x>0时,lnx≤x-1.令h(x)=lnx-x+1,x>0,h'(x)=1x-1,所以当x∈(0,1)时,h'(x)>0,所以h(x)在(0,1)上递增,当x∈(1,+∞)时,h'(x)<0,所以h(x)在(1,+∞)上递减,所以h(x)max=h(1)=0,故h(x)=lnx-x+
1≤0,即证得当x>0时,lnx≤x-1,当且仅当x=1时取等号.··························10分当x>1时,有f(x)=a-exx+alnx=a(xlnx+1)-exx<a[x(x-1)+x]-e3x327x=ax2-e3x327
x,令ax2-e3x327=0,解得x=27ae3,所以f(27ae3)<0.又f(lna)>f(1)>0,且lna<a-1<a<27ae3,f(x)在[lna,+∞)上单调递减,f(x)的图象不间断,所以f(x)在[lna,+∞)上有且仅有1个零点.综上,当a>e时,函数f(x)有且仅
有1个零点.······································12分