【文档说明】江苏省江阴市2021-2022学年高二上学期期初摸底检测数学试题.pdf,共(5)页,1.240 MB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-a74c20ac180020166e377e3a4ec7cdc0.html
以下为本文档部分文字说明:
高二数学2021.8注意事项及说明:本卷考试时间为120分钟,全卷满分为150分.一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数32zi的虚部为········
··············································································(▲)A.2B.2C.2iD.2i2.向量=3a,=23b,向量a与b的夹角是12
0°,则ab等于······································(▲)A.3B.-3C.-33D.333.已知a=log20.2,b=20.2,c=0.20.3,则·······
································································(▲)A.a<b<cB.a<c<bC.c<a<bD.b<c<a4.已知组数据1x,2x,…,nx的平均数为2,方差为5,则数据21x+1,22x+1,…,2nx+1
的平均数x与方差2s分别为························································································(▲)A.x=4,2s=10B.x=5,2s=11C.x=5,
2s=20D.x=5,2s=215.已知1x,则x2+2x-1的最小值是···········································································
(▲)A.23+2B.23-2C.23D.26.已知函数f(x)=(3)5,12,1axxaxx是R上的减函数,则实数a的取值范围是························(▲)A.(0
,3)B.(0,3]C.(0,2)D.(0,2]7.已知函数f(x)=sinωxcosωx-3cos2ωx+32(ω>0)的相邻两个零点差的绝对值为π4,则函数f(x)的图象可由······················
·············································································(▲)A.函数g(x)=cos4x的图象向左平移5π24个单位长度而得B.函数g(x)=co
s4x的图象向右平移5π24个单位长度而得C.函数g(x)=cos2x的图象向右平移7π24个单位长度而得D.函数g(x)=cos2x的图象向右平移5π6个单位长度而得8.(原题)据《九章算术》记载,“鳖臑(biēnào)”为四个面都是直角三角形的三棱锥.如图所示,现有一个
“鳖臑”,PA底面ABC,ABBC,且2PAABBC,三棱锥外接球表面积为·································································
·························································(▲)A.4B.8C.12D.16二、多选题(本大题共4小题,每小题5分,共20分.在每
小题列出的四个选项中,有多个选项是符合题目要求的,全部选对得5分,部分选对得2分,选错的得0分)9.从一批产品(既有正品也有次品)中取出三件产品,设A={三件产品全不是次品},B={三件产品全是次品},C={三件产品有次品,但不全是次品},则下列结论中正确的是·············
·········································································································
·······(▲)A.A与C互斥B.B与C互斥C.A与B对立D.A与C对立10.已知函数f(x)=sinxcosx,下列四个命题中正确的是··············································
····(▲)A.若f(x1)=-f(x2),则x1=—x2B.f(x)的最小正周期是2πC.f(x)在区间(-π4,π4)上是增函数D.f(x)的图象关于直线x=3π4对称11.在△ABC中,若AB=4,AC=5,△BCD为等边三角形(A,D两点在BC两侧),则当四边形
ABDC的面积S最大时,下列选项正确的是(▲)A.∠BAC=2π3B.∠BAC=5π6C.S=4134+20D.S=413412.设正方体1111ABCDABCD的棱长为2,E为11AD的中点,F为1CC上的一个动点,设由点A,E,F构成的平面为,则(▲)A.平面
截正方体的截面可能是三角形B.当点F与点1C重合时,平面截正方体的截面面积为26C.点D到平面的距离的最大值为26?3D.当F为1CC的中点时,平面截正方体的截面为五边形三、填空题(本大题共4小题,每小题5分
,共20分.)13.在一次射击训练中,两人射击同一个目标,甲击中目标的概率为0.8,乙击中目标的概率为0.7,则甲乙均未击中目标的概率为▲.14.定义在(-1,1)上的奇函数f(x)=x+mx2+nx+1,则常数
m,n的值分别为▲.15.ABC的内角A,B,C的对边分别为a,b,c,tan23B,已知向量(,)mabbc,(,)ncba.若����//���,则ac▲.16.如图,在边长为5+2的正方形ABCD中,以
点A为圆心画一个扇形,以点O为圆心画一个圆,M,N,K均为切点,以扇形为圆锥的侧面,圆O为圆锥的底面,围成一个圆锥,则该圆锥的表面积为▲,体积为▲.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本题满分10分)已知
复数z1=m-2i,复数z2=1-ni,其中i是虚数单位,m,n为实数.(1)若m=1,n=-1,求|z1+z2|的值;(2)若z1=z22,求m,n的值.▲▲▲▲▲18.(本题满分12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且acosB=bcosA.(1
)求ba的值;(2)若sinA=13,求sin(C-π4)的值.▲▲▲▲▲19.(本题满分12分)如图,正方体的棱长为1,B′C∩BC′=O,求:(1)AO与A′C′所成角的大小;(2)AO与平面ABCD所成角的正切值;▲▲▲▲▲20.(本题满分12分)一汽
车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量(单位:辆)如下表:A类轿车B类轿车C类轿车舒适型100150z标准型300450600按类用分层随机抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.(1)求z的值;(2)在C类轿车中用分层随机抽样的方法抽取
5辆轿车,再从这5辆轿车中任意抽取2辆,求至少有1辆舒适型轿车的概率;(3)用简单随机抽样的方法从B类舒适型轿车中抽取8辆,它们的综合测评得分(十分制)分别为:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与总体平均数之
差的绝对值不超过0.5的概率.▲▲▲▲▲21.(本题满分12分)定义在R上的增函数y=f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y).(1)求f(0);(2)求证:f(x)为奇函数;(3)若f(
k·3x)+f(3x-9x-2)<0对任意x∈R恒成立,求实数k的取值范围.▲▲▲▲▲22.(原题)(本题满分12分)如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,M为棱AC的中点.AB=BC,AC=2,
AA1=2.(1)求证:B1C∥平面A1BM;(2)求证:AC1⊥平面A1BM;(3)在棱BB1上是否存在点N,使得平面AC1N⊥平面AA1C1C?如果存在,求此时BNBB1的值;如果不存在,请说明理由.▲▲▲▲▲