福建省漳州市2021届高三毕业班适应性测试(一)数学试题 含答案

DOC
  • 阅读 1 次
  • 下载 0 次
  • 页数 16 页
  • 大小 1.960 MB
  • 2024-09-21 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
福建省漳州市2021届高三毕业班适应性测试(一)数学试题 含答案
可在后台配置第一页与第二页中间广告代码
福建省漳州市2021届高三毕业班适应性测试(一)数学试题 含答案
可在后台配置第二页与第三页中间广告代码
福建省漳州市2021届高三毕业班适应性测试(一)数学试题 含答案
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的13 已有1人购买 付费阅读2.40 元
/ 16
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】福建省漳州市2021届高三毕业班适应性测试(一)数学试题 含答案.doc,共(16)页,1.960 MB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-a387ae0fe785ed6dab1aacee9f252bed.html

以下为本文档部分文字说明:

学校:准考证号:姓名:(在此卷上答题无效)工作秘密★启用前漳州市2021届高三毕业班适应性测试(一)数学答案(考试时间:120分钟;满分:150分)本试卷分第Ⅰ卷和第Ⅱ卷两部分。第Ⅰ卷为选择题,第Ⅱ卷为非选择题。第Ⅰ卷(选择题60分)一.单项选择题(本题共8小题,每小题5分,共40分.在每小题给出

的四个选项中,只有一项是符合题目要求的.)1.已知集合3,2,1,2−=M,2,2−=N,下列结论成立的是A.NMB.=NMC.MNM=D.1=NCM2.若复数321zi=+(i为虚数单位),则复数z在复平面上对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.

平面直角坐标系xOy中,角的顶点为坐标原点,始边与x轴的非负半轴重合,其终边上一点P绕原点顺时针旋转π6到达点()3,4Q的位置,则πsin6−=A.35−B.35C.45−D.454.已知F为抛物线xy82=的焦点,M为抛物线上任意一点,点()

4,4A,则MFMA+的最小值为A.6B.24C.52D.45.原始的蚊香出现在宋代.根据宋代冒苏轼之名编写的《格物粗谈》记载:“端午时,贮浮萍,阴干,加雄黄,作纸缠香,烧之,能祛蚊虫.”如图,为某校数学兴趣小组用数学软件制作的“螺旋蚊香”,画法如下:在水平直线l上取长度为1的线段

AB,做一个等边三角形ABC,然后以点B为圆心,AB为半径逆时针画圆弧,交线段CB的延长线于点D,再以点C为圆心,CD为半径逆时针画圆弧,交线段AC的延长线于点E,以此类推,当得到的“螺旋蚊香”与直线l恰有5个交点

时,“螺旋蚊香”的总长度的最大值为A.14B.356C.24D.306.已知ABC中,5==ACAB,8=BC,点O是ABC的重心,则=ACBOA.10B.223C.13D.2297.正实数a,b,c满足22=+−aa,33=+bb,4log4=+

cc,则实数a,b,c之间的大小关系为A.cabB.cbaC.bcaD.acb8.正四面体ABCD的体积为4,O为其中心,正四面体EFGH与正四面体ABCD关于点O对称,则这两个正四面体公共部分的体积为A.3B.

83C.2D.43二.多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分.)9.小王于2016年底贷款购置了一套房子,根据家庭收入情况,小王选择了10年期

每月还款数额相同的还贷方式,且截止2020年底,他没有再购买第二套房子.下图是2017年和2020年小王的家庭收入用于各项支出的比例分配图:2017年各项支出2020年各项支出根据以上信息,判断下列结论中不正确的是A.小王一家2020年用于饮食的支出费用跟2017年相同B.小王一家2020年用

于其他方面的支出费用是2017年的3倍C.小王一家2020年的家庭收入比2017年增加了1倍D.小王一家2020年用于房贷的支出费用比2017年减少了10.已知等差数列na的公差0d,前n项和为nS,若6

10SS=,则下列说法正确的是A.80a=B.160S=C.若0d,则8100aa+D.若0d,则128aa11.在ABC中,a,b,c分别是角A,B,C的对边,其外接圆半径为R,内切圆半径为3=r,满足3coscoscosRCcBbAa=++,ABC

的面积6=ABCS,则A.4=++cbaB.6=RC.61sinsinsin=++CBAD.312sin2sin2sin=++CBA12.已知函数||()sinxfxex=,则下列结论正确的是()A.()fx

是周期为2的奇函数B.()fx在3,44−上为增函数C.()fx在(10,10)−内有21个极值点D.axxf)(在40,上恒成立的充要条件是1a第Ⅱ卷(非选择题90分)三.填空题(本大题共4小题,每小题5分,共20分.)13.5

22xx+的展开式中,5x的系数为_______.14.定义在R上的偶函数)(xfy=,当0x时,121)(+=xxf,则不等式1)(lgxf的解集为_______.15.三棱柱111CBAAB

C−中,CABBBCC平面平面⊥11,31=CBC,ACB是等腰直角三角形,2=ACB,21==CCCB,则异面直线11BA与1AC所成角的余弦值为_______.16.已知双曲线C:12222=−byax(0a,0b)

的左、右焦点分别为F,F,以坐标原点O为圆心,OF为半径的圆交C的一条渐近线于,AB两点,且线段BF被C的另一条渐近线平分,则C的离心率为_______;若C的焦距为4,P为C上一点,且tan22OFP=,直线PF交C于另一点Q,则QF=______

_.(本题第一空2分,第二空3分)四.解答题(本大题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)在ABC中,a,b,c分别是角A,B,C的对边,并且222bcabc+−=.(1)若2b=,sin2sinCB=,求AB

C的面积;(2)求coscosBC+的最大值.18.(本小题满分12分)已知等比数列na的前n项和为nS,满足143=S,且12a,2a,321a依次构成等差数列.(1)求数列na的通项公式;(2)请

从①nabnn+=②nnnab=③122loglog1+=nnnaab这三个条件选择一个,求数列nb的前n项和nT.注:如果选择多个条件分别进行解答,按第一个解答进行计分.19.(本小题满分12分)如图,圆柱1OO的轴截面11ABBA是正方形,1O、O分别是上、下底面的圆心,C是弧AB

的中点,D、E分别是1AA与BC中点.(1)求证:DE//平面11ACB;(2)求锐二面角11BACB−−的余弦值.20.(本小题满分12分)《中国制造2025》是经国务院总理李克强签批,由国务院于2015年5月印发的部署全面推进实施制造强国的战略文件,是中国实施制造强国战略第一个十年的行动纲

领.制造业是国民经济的主体,是立国之本、兴国之器、强国之基.发展制造业的基本方针为质量为先,坚持把质量作为建设制造强国的生命线.某制造企业根据长期检测结果,发现生产的产品质量与生产标准的质量差都服从正态分布2(,)N

,并把质量差在(,)−+内的产品为优等品,质量差在(,2)++内的产品为一等品,其余范围内的产品作为废品处理.优等品与一等品统称为正品.现分别从该企业生产的正品中随机抽取1000件,测得产品质量差的样本数据统计如下:(1)根据频率分布直方图,求样本平均数x;(同一组中的数

据用该组区间的中点值代表)(2)根据大量的产品检测数据,检查样本数据的方差的近似值为100,用样本平均数x作为的近似值,用样本标准差s作为的估计值,求该厂生产的产品为正品的概率;参考数据:若随机变量服从正

态分布()2,N,则:()0.6827P−+≤,()220.9545P−+≤,()330.9973P−+≤(3)假如企业包装时要求把3件优等品球和5件一等品装在同一个箱子中,质检员每次从箱子中摸出三件产品进行检验,记摸出三件产品中优等品球的件

数为X,求随机变量X的分布列及期望值.21.(本小题满分12分)已知函数()ln(1)1fxx=−−,ln()xagxexb−=−−(0a,bR)(1)当1a=,讨论)(xg在R上的零点个数;(2)若关于x的不等式xxfbaxg−+−)(ln)(恒成立,求实

数a的取值范围.22.(本小题满分12分)阿基米德(公元前287年公元前212年,古希腊)不仅是著名的哲学家、物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.在平面直角坐标系xOy中,椭圆E:22221xyab+=(0ab)的面积为23

,两焦点与短轴的一个顶点构成等边三角形.过点()10M,且斜率不为0的直线l与椭圆E交于不同的两点A,B.(1)求椭圆E的标准方程;(2)设椭圆E的左、右顶点分别为P,Q,直线PA与直线4x=交于点F,试证明B,Q,F三点共线;(3)求AOB面积的最大值.学校:准

考证号:姓名:(在此卷上答题无效)工作秘密★启用前漳州市2021届高三毕业班适应性测试(一)数学参考答案(考试时间:120分钟;满分:150分)本试卷分第Ⅰ卷和第Ⅱ卷两部分。第Ⅰ卷为选择题,第Ⅱ卷为非选择题。第Ⅰ卷(选择题60分)一.单项选择题(本大题共8小题,每小题5分,共40分.在每

小题给出的四个选项中,只有一项是符合题目要求的.)1.C2.D3.D4.A5.B6.C7.A8.C【解析】1.集合3,2,1,2−=M,2,2−=N,不满足NM,则A错;2,2−=NM,则B错;MNM=,则

C正确;31,=NCM,则D错.故选C.2.()()()3212211111iziiiii+====++−−+则1zi=−,复数z在复平面上对应的点为()1,1−,故复数z在复平面上对应的点位于第四象限,故选D.3.依题意可知()3,4Q在角6−的终边上,所以64sin5=

−,故选D.4.点()4,4A是抛物线内的一点,设点M在抛物线准线上的射影为N,根据抛物线的定义可知MNMF=,要求MFMA+的最小值,即求MNMA+的最小值.当A,M,N三点共线时,MNMA+取到最小值(

)624=−−.故选A.5.由题意得,恰好有6段圆弧或有7段圆弧与直线l相交时,才恰有5个交点,每段圆弧的圆心角都为2π3,且从第1段圆弧到第n段圆弧的半径长构成等差数列:1,2,,n当得到的“螺旋蚊香”与直线l恰有5个交点时,“螺旋蚊香”的总长度的最大值为()356277132=+

.故选B.6.由题意,以BC所在直线为x轴,BC的垂直平分线为y轴建立坐标系,由于5==ACAB,8=BC,则()0,4−B,()0,4C,故()3,0A又点O是ABC的重心,则()1,0O(4,1)BO=,()43

AC=−,,13316=−=ACBO,故选C7.4log4=+cccc−=4log4,即c为函数xy4log=与xy−=4的图象交点的横坐标33=+bbbb−=+431,即b为函数xy31+=与xy−=4的图象交点的

横坐标22=+−aaaa−=+4212,即a为函数xy212+=与xy−=4的图象交点的横坐标在同一坐标系中画出图象,可得cab.故选A.8.如图,点E,F,G,H,I,J分别是边AB,AC,AD,BC,CD,D

B的中点,这两个正四面体公共部分为多面体GEFHIJ.三棱锥AEFG−是正四面体,其棱长为正四面体ABCD棱长的一半,则11==82AEFGABCDVV−−这两个正四面体公共部分的体积为144422ABCDAEFGVV−−−=−=.故选C.二

、多项选择题(本大题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,有选错的得0分,部分选对的得3分。)9.ACD10.BCD11.ABD12.BD【解析】9.由于小王选择的是每月还款数额相

同的还贷方式,故可知2020年用于房贷方面的支出费用跟2017年相同,D错;设一年房贷支出费用为n,则可知2017年小王的家庭收入为560%3nn=,2020年小王的家庭收入为540%2nn=,55150%32n

n=,小王一家2020年的家庭收入比2017年增加了50%,C错;2017、2020年用于饮食的支出费用分别为555525%,25%31228nnnn==,A错;2017、2020年用于其他方面的支出费用分别是5536%,12%310210nnnn==,B对.故选ACD.

10.由已知610SS=,得890aa+=.若80a=,则90a=,不满足0d,故A错;由()()116168916802aaSaa+==+=,故B正确;当0d时,且890aa+=,则80a,90a,所以810920aaa+=,故C正确;当0d时,且890aa+=,则0

8a,09a,所以0910+=daa,所以8121020aaa+=,则812aa,故D正确.故选BCD.11.4,6)(23)(21=++=++=++=cbacbarcbaSABC,A正确;已知3coscoscosRCcBbAa=++所以,3cossin2cossin2cossin2

RCCRBBRAAR=++即312sin2sin2sin=++CBA,D正确;若ABC为锐角三角形,,631212sin212sin212sin212222==++=RCRBRARSABC所以6=R,若ABC为直角三角形或钝角三角形时可类似证明,B正确;212sinsinsinabcRA

BC++==++,所以31sinsinsin=++CBA,C错.故选ABD.12.因为()xf的定义域为R,()sin()()xfxexfx−−=−=−,所以()xf是奇函数,但是22(2)sin(2)sin

()xxfxexexfx+++=+=,所以()xf不是周期为2的函数,故A错误;当(,0)4x−时,()sinxfxex−=,(cos()sin)0xxfxex−−=,()fx单调递增,当3(0,)4x时,()sinx

fxex=,(sin))0c(osxxfxex+=,()fx单调递增,且()fx在3(,)44−连续,故()fx在3(,)44−单调递增,故B正确;当[0,10)x时,()sinxfxex=,()()+=+=4sin2cossinxexxe

xfxx,令()0fx=得,(1,2,3,4,5,6,7,8,9,10)4xkk=−+=,当(10,0)x−时,()sinxfxex−=,()()+=−=−−4cos2sincosxexxexfxx令()0fx=得,(1,2,3,4,5,6,7,8,9,10)4x

kk=+=−−−−−−−−−−,因此,()fx在(10,10)−内有20个极值点,故C错误;当40,x时,sin()xexfxaxax≥≤,设sin()xexgxx=,所以()()2sincossinxxxxxxexgx−+=,令()sincossinhxx

xxxx=+−,(0,]4x,()()0sincossin−+=xxxxxh,()xh单调递增,()()00=hxh,所以()0xg,()gx在(0,]4单调递增.当x趋近于0时,()xxexgxsin=趋近于1,所以1a,故D正确.故

选BD.三.填空题(本大题共4小题,每小题5分,共20分.)13.4014.),10()101,0(+15.4316.2,9【解析】13.522xx+展开式的通项为()51052215522rrrrrrrTCxCxx−−+==令51052r−=,则2r=,所以5

22xx+的展开式中,5x的系数为225240C=故答案为40.14.由已知,当0x时,1)21()(+=xxf,不等式()1lgxf等价于()()1lg−fxf又)(xf定义在R上的偶函数,所以1lg−x,所以1lgx或1lg−x,解得10

x或1010x则不等式()1lgxf的解集为),10()101,0(+故答案为),10()101,0(+.15.因为31=CBC,21==CCCB,所以21=DA,又因为ACB是等腰直角三角形,2=

ACB,2=CB,所以2211=BA,因为CABBBCC平面平面⊥11,又BCAC⊥,11CCBBCABBC=平面平面所以BBCCAC11平面⊥,所以1ACAC⊥.又12ACCC==,所以221=AC根据题意可知异面直线11BA与1AC所成角为

DBA11,根据余弦定理得,()()4322222222222cos222111212121111=−+=−+=DBBADADBBADBA故答案为43.16.如图所示建立平面直角坐标系,设BF的中点为M,则由双曲线的对称性知,BOMFOMAOF==,所以π3

BOMFOMAOF===,所以+===222360tanbacab,可得224ac=,422=ac,2==ace;C的焦距为4,所以2c=,1a=.设QFx=,则'22QFxax=+=+,又由tan22OFP

=,得1cos3OFP=,所以1cos3OFQ=−,在'FFP△中,由余弦定理得,222''2'cos'QFQFFFQFFFFFQ=+−,即()221216243xxx+=+−−,解

得9x=,即9QF=.故答案为2,9.四、解答题(本大题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤.)17.解:(1)因为sin2sinCB=,2=b,所以24cb==,因为222bcabc+=+,所以2221cos22bcaA

bc+−==,···································2分又因为(0,π)A,所以π3A=.·······························································

3分所以ABC的面积113sin2423222SbcA===.·····························5分(2)由(1)可得3A=,所以()+−=+−+=+3co

scoscoscoscoscosBBABBCB+=+=6sinsin23cos21BBB··································8分MBOF'FQPAxy因为20π3B,

所以ππ536π6B+,···················································9分所以当π3B=时,+=+6sincoscosBCB有最大值1.···························

10分18.解:(1)设等比数列的公比为q,根据已知条件,12a,2a,321a依次构成等差数列,所以3122122aaa+=,则21112122qaaqa+=,···················

························2分因为01a,所以22122qq+=,解得2=q················································4分由143=S,即14321=++aaa,所以1442111=++aa

a,解得21=a············5分所以nna2=················································································

··········6分(2)选①nnabnnn+=+=2··································································7分)(nbbbb

Tnnn+++++++++=++++=3212222321321··············9分()212121++−−=nnn2122nnn++−=············································

···········12分选②nnnab=·······················································································7分nnnnbbbbT22322213

21321++++=++++=(*)143222322212+++++=nnnT······················································9分可得()()22122121222

23222111321−−=−−−=−++++=−+++nnnnnnnnnT11分所以()2211+−=+nnnT·······················································

·················12分选③()11111loglog1122+−=+==+nnnnaabnnn····································9分1111111312121121+=+−=+−++−+−=+++=nnnnnbbbTnn

···········12分19.解:(1)取1CB的中点为M,连接ME,1AM则EM//1BB//1AA,且1112EMAAAD==···············································2分所以四边形1

ADEM为平行四边形,所以DE//MA1,又1AM面11ACB,DE面11ACB所以DE//面11ACB.···············································································4分(2)⊥

1OO面ABC,则OBOO⊥1,OCOO⊥1,AB是圆柱底面的直径,C是弧AB的中点,所以CBCA=,O为AB中点,则OBOC⊥以O为原点,OB,OC,1OO分别为x轴,y轴,z轴的正方向建立空间直角坐标系Oxyz−,如图.···························

······································································5分设1OB=,则()1,0,0B=,()0,1,0C=,()11,0,2A=−,()11,0,2B=········6分()12,

0,2AB=−,()11,1,2AC=−设平面1ABC的一个法向量为()111,,nxyz=,则1100nABnAC==,1111122020xzxyz−=+−=,取11x=,则11y=,11z=,则()1,1,1n=·

·······················································································8分()112,0,0AB=,()11,1,2AC=−设平面11ABC的一个法向量为()222

,,mxyz=,则11100mABmAC==,11112020xxyz=+−=,解得10x=,取12y=,则11z=,则()0,2,1m=·····································

·················································10分所以2115cos,535mnmnmn+===.··········································

······11分所以锐二面角11BACB−−的余弦值为155.···············································12分20.解:(1)4656566666760.010100.020100.04510222x+++=

++768686960.020100.0051022++++················································2分70=·····················

··············································································3分(2)由题意样本方差2100s=,故210

s=,所以2(70,10)XN,······4分由题意,该厂生产的产品为正品的概率(6090)(6070)(7090)PPXPXPX==+1(0.68270.9545)0.81862=+=.所以DE//面11ACB.········

···························6分(3)X所有可能取值为0,1,2,3.·····················································7分()0335385028CCPXC===()123538

15128CCPXC===()21353815256CCPXC===()3035381356CCPXC===······················9分随机变量X的分布列为X0123P52815281556156·····················

····················································································11分()89561356152281512850=+++=XE·······················

·····················12分21.解:(1)1a=,()xgxexb=−−,()1xgxe=−,令()0gx=,得0x=当0x,()0gx,)(xg在()0,−单调递减当0x,()0gx,)(xg在()+,0单调递增所以0=x是()x

g的极小值点同时也是最小值点,即bgxg−==1)0()(min······2分当01−b,即1b时,)(xg在R上没有零点;当01=−b,即1=b时,)(xg在R上只有1个零点;·················

·················3分时,即当1,01−bb因为()0bgbe−−=,所以)0,()(−在xg只有一个零点,又因为bebbebgbb2)(−=−−=,取2)(,2)(−=−=xxexxex,()2

0xxe=−=令,得ln2x=当2lnx,02)(−=xex,)(x在()+,2ln单调递增当2lnx,02)(−=xex,)(x在()2ln,−单调递减02ln222ln2)2(ln2ln−=−=e,所以对xR,()0x,所以0)(b,即0

2−beb所以02)(−=bebgb,所以),0()(+在xg内只有一个零点,所以()xg在R上有两个零点.···································································

5分综上所述,当1b时,()xf在R上有两个零点;当1b时,函数()xf在R上没有零点;当1=b时,函数()xf在R上有一个零点.···················································6分(2)方法一:xx

fbaxg−+−)(ln)(恒成立,()+,1x即xxbabxeax−−−+−−−−1)1ln(lnln1)1ln(lnln−−−−xaeax······················································

·················7分所以)1(,1)1ln(lnln−+−−+−xxxaxeax构造xexhx+=)(,所以01)(+=xexh,()xh在R上单调递增只需)1ln(ln−−xax,即)1

ln(ln−−xxa恒成立···································8分令)1ln()(−−=xxxu,12111)(−−=−−=xxxxu········································9分当21x时,0)(

xu,所以)(xu在()1,2单调递减;当2x时,0)(xu,所以)(xu在()2,+单调递增,所以2)2(min==uu,即2lna·····························································11分又0a,所以

20ea.·····································································12分方法二:1x,有()lnlnln11xaeax−+−−,则当2x=时,2lnln1aea−−·······

····7分令()2lnln1aaea−=−+,所以()a在()0,+单调递减,··························8分注意到2()0e=,所以20ea.(必要性)···············

····························9分下面证明1xex+(xR)令()1xxex=−−,()1xxe=−当0x,()0x,所以()x在()0,+上单调递增当0x,()0x

,所以()x在(),0−上单调递减所以()()0100min=−==ex,即对xR,()10xxex=−−,即1xex+(xR)得证.因为1+xex,所以lnln1xex+,即ln1xx+,即()0,1ln−xxx.当20ae时,ln21lnl

n(1)1ln(1)11xaxeexaxxx−−−+−−−+−····························11分lnlnln(1)1xaeax−+−−.(充分性)······································

·················12分方法三:xxfbaxg−+−)(ln)(,即lnlnln(1)1xaexbabxx−−−−+−−−恒成立lnlnln(1)1xaeax−−−−······················

·················································7分即1x,ln()lnln(1)10xaaaex−=−+−−恒成立,······························8分注意到()a

在0a单调递增,·································································9分当20ae时,22()()1ln(1)1(1)(2)0xaeexxx−=−+−−−+−=,所以()0a········

···············································································10分当2ae时,22()()1ln(1)()xaeexhx−=−+−=注意

到(2)0h=,存在2x=,使得()0a,矛盾·····································11分综上,20ae.···················································

······························12分22.解:(1)由题意可得:22223=2c+abaabc==,解得2a=,3b=,1c=·······2分则椭圆方程为22143xy+=·····

···································································3分(2)设直线l的方程为1xty=+,设()11,Axy,()22,

Bxy由221143xtyxy=++=,整理得()2234690tyty++−=122122634934tyytyyt−+=+−=+································

··············································4分椭圆E的左、右顶点分别为()2,0P−,()2,0Q,直线PA方程为:()1122yyxx=++,又直线PA与直线4x

=交于点F,则1164,2yFx+,·································5分因为BQk,QFk都存在,所以要证B,Q,F三点共线,只需证QFBQkk=·······

··6分只需证22621122+=−xyxy只需证3311112+=−tyytyy只需证121221333yytyyyty−=+只需证()0322121=+−yyyty而()04363439232222121=+−−+−=+−ttttyyyty故B,Q

,F三点共线.··········································································8分(3)由(2)可得122122634934tyytyyt−+=+−=+()2212121221161=422

34AOBtSOMyyyyyyt+−=+−=+·································10分令21mt=+(1m),则2661313OABmSmmm==++令()13fmmm=+,函数()fm在区间[1,)+单调递增,即当1m=,即

0t=时,S取到最大值32.·················································12分

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
相关资源
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?