【文档说明】山东省烟台市2023-2024学年高二下学期7月期末考试 数学.docx,共(4)页,1.160 MB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-a279f47e4866d2b390c209d361955027.html
以下为本文档部分文字说明:
2023—2024学年度第二学期期末学业水平诊断高二数学注意事项:1.本试题满分150分,考试时间为120分钟.2.答卷前,务必将姓名和准考证号填涂在答题纸上.3.使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,
笔迹清晰:超出答题区书写的答案无效:在草稿纸、试题卷上答题无效.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.从6名大学毕业生中任选3名去某中学支教,不同选派方法的总数为()A.12B.18C.20D.1202.已知等差数列
的前项和为,若,则()A.36B.45C.72D.903.已知曲线在点处的切线与轴相交于点,则实数()A.-2B.-1C.1D.24.已知等比数列的前项和,则()A.-1B.1C.-2D.25.中心极限定理在概
率论中应用广泛.根据该定理,若随机变量,当充分大时,可以由服从正态分布的随机变量近似替代,且的均值、方差分别与随机变量的均值、方差近似相等.某射手对目标进行400次射击,且每次射击命中目标的概率为,则估计射击命中次数小
于336的概率为()附:若,则,.A.0.9987B.0.9773C.0.8414D.0.56.已知函数在上单调递增,则实数的取值范围为()A.B.C.D.7.某产品只有一等品、二等品,现随机装箱销售,每箱15件.假定任意一箱含二等品
件数为的概率分别为.一顾客欲购一箱该产品,开箱随机查看其中1件,若该件产品为一等品,则买下这箱产品,否则退回,则该顾客买下这箱产品的概率为()A.B.C.D.8.已知,且,则下列结论一定成立的是()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题
目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.某弹簧振子在振动过程中的位移(单位:)与时间(单位:)之间的函数关系为,则()A.时,弹簧振子的位移为B.时,弹簧振子的瞬时速度为C.时,弹簧振子的瞬时加速度为D.时,弹簧振子的瞬时速度为10.已知某两个变
量具有线性相关关系,由样本数据确定的样本经验回归方程为,且.若剔除一个明显偏离直线的异常点后,利用剩余9组数据得到修正后的经验回归方程为,由修正后的方程可推断出()A.变量的样本相关系数为正数B.经验回归直线恒过C.每增加1个单位
,平均减少1.6个单位D.样本数据对应的残差的绝对值为0.211.设数列满足下列条件:,且当时,.记项数为的数列的个数为,则下列说法正确的有()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分.12.展开式中
含项的系数为__________.13.若曲线与总存在关于原点対称的点,则的取值范围为__________.14.南京大学2023年的本科生录取通知书用科赫曲线的数学规律鼓励新生成为独一无二的自己,还附赠“科赫雪花”
微章,意在有限的生命中,创造无限可能.科赫曲线的作法是:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边,反复进行这一过程.下图展示的分别是1阶、2阶、3阶、4阶科赫曲线,设1阶科赫曲线的周长为,则阶科赫曲
线的周长为__________;若阶科赫曲线围成的平面图形的面积为,且满足,则的最小值为__________.(本小题第一空2分,第二空3分)四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)某高中在高二年级举办创新作文比赛活动,满分100
分,得分80及以上者获奖.为了解学生获奖情况与选修阅读课程之间的关系,在参赛选手中随机选取了50名学生作为样本,各分数段学生人数及其选修阅读课程情况统计如下:成绩学生人数6102473选修读课程人数03953(1)根据以上统计数据完成下面的列联表,
依据的独立性检验,能否认为学生获奖与选修阅读课程有关联;获奖没有获奖合计选修阅读课程不选阅读课程合计(2)在上述样本的获奖学生中随机抽取3名学生,设3人中选修阅读课程人数为,求的分布列及数学期望.参考公式:,其中.0.10.050.010.0050.0012.7063.8416.6357.87
910.82816.(15分)已知函数.(1)当时,求过点且与图象相切的直线的方程;(2)讨论函数的单调性.17.(1.5分)已知数列是等差数列,且,数列满足,,且.(1)求数列的通项公式;(2)将数列的所有公共项按从小到大的顺序组成一个新的数列,
求数列的通项公式;(3)设数列的前项和为,证明:.18.(17分)一个不透明的袋子中装有大小形状完全相同的6个小球,其中3个黑球、3个白球.现从袋中随机逐个抽取小球,若每次取出的是黑球,则放回袋子中,否则不放回,直至3个白球全部取出.(1)求在第2次取出的小球为黑球的条件下,
第1次取出的小球为白球的概率;(2)记抽取3次取出白球的数量为,求随机变量的分布列;(3)记恰好在第次取出第二个白球的概率为,求.19.(17分)已知函数存在两个不同的极值点.(1)求的取值范围;(2)设函数的极值点之和为,零点之和为,求证:.