【文档说明】福建省莆田市2020-2021学年高二下学期期末质量监测数学试题含答案.docx,共(11)页,560.574 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-a24a4da8790ce30b6b569e4cad4143e1.html
以下为本文档部分文字说明:
莆田市2020—2021学年下学期期末质量监测高二数学试卷满分:150分考试时间:120分钟注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答
,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.3.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.4.保持答题卡卡面清洁,不折叠、不破损.
考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数21izi=+在复平面内对应点位于()A.第一象限B.第二象限
C.第三象限D.第四象限2.已知'()fx是函数()()2()12fxxx=−+的导函数,则()'1f=()A.0B.2C.4D.63.某工厂为节能降耗,经过技术改造后,生产某种产品的产量x(单位:吨)与相应的生产能耗y(单位:吨)的对应数据如下表:x(吨)3456
y(吨)2.5344.5根据上表提供的数据,求得y关于x的线性回归方程为0.35ybx=+,则b的值为()A.0.3B.0.7C.3D.74.已知44280128(12)(12)xxaaxaxax−+=++++,则128aaa+++=()A.22−−B
.2−C.0D.15.定义在R上的函数()fx,其导函数为'()fx,且函数()1'()yxfx=+的图象如图所示,则()A.()fx有极大值()1f−和极小值()1fB.()fx有极大值()2f−和极小值()1fC.()fx有极
大值()1f−和极小值()2f−D.()fx有极大值()2f−和极小值()1f−6.甲、乙、丙三人互传一个篮球,持球者随机将球传给无球者之一.由甲开始持球传递,经过4次传递后,篮球回到甲手上的概率是()A.
14B.13C.38D.347.《数术记遗》是《算经十书》中的一部,相传是汉末徐岳所著,该书记述了我国古代14种算法,分别是:积算(即筹算)、太乙算、两仪算、三才算、五行算、八卦算、九宫算、运筹算、了知算、成数算、把头算、龟算、珠算和计数.某学习小组有甲、乙、丙三人,该小组要收集九宫算、运筹算、
了知算、成数算、把头算5种算法的相关资料,要求每人至少收集其中一种,但甲不收集九宫算和了知算的资料,则不同的分配方案种数有()A.38B.56C.62D.808.已知,,0abc,且2a,3b,5c.若ln22lnaa=,ln33lnbb=,l
n55lncc=,则()A.abcB.cbaC.acbD.bac二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.设A,B为两个随机事件,以下命题正确
的为()A.若A,B是互斥事件,()13PA=,()12PB=,则()16PAB=B.若A,B是对立事件,则()1PAB=C.若A,B是独立事件,()13PA=,()23PB=,则()19PAB=D.若()13PA=,()14PB=,
且()14PAB=,则A,B是独立事件10.已知某批零件的质量指标(单位:毫米)服从正态分布()225.40,N,且()25.450.1P=,现从该批零件中随机取3件,用X表示这3件产品的质量指标值不.位.于.区间()25.35,25.45的产品件数,则(
)A.(25.3525.45)0.8P=B.()2.4EX=C.()0.48DX=D.()10.512PX=11.一袋中有大小相同的4个红球和2个白球,下列说法正确的是()A.从中任取3球,恰有一个白球的概率是13B.从中任取3球,恰有两
个白球的概率是15C.从中任取3球,取得白球个数X的数学期望是1D.从中不放回地取3次球,每次任取1球,已知第一次取到红球,则后两次中恰有一次取到红球的概率为2512.已知1x,2x为函数32()3fxxax=++
的两个极值点,直线l过()()11,Pxfx,()()22,Qxfx两点,则下列说法正确的是()A.0x=是()fx的一个极值点B.若()fx的单调递减区间为20,3,则1a=−C.若l的斜率为-2,
则3a=−D.当3a=时,()fx的图象关于点()1,5−对称三、填空题:本题共4小题,每小题5分,共20分.13.复数z满足:1zzi+=−,则z=__________.14.521xx+展开式
中x的系数为___________.(用数字作答)15.定义在()0,+上的函数()fx,其导函数为'()fx,若'()()0xfxfx−,且()22f=,则不等式()fxx的解集是___________.16.已知甲、乙两地相距150km.根据交通法规,两地之间的车速应限制
在50~100km/h.假设油价是7元/L,某汽车以km/hx的速度行驶,其耗油量为33L/h54000x+,司机每小时的工资是35元.如果不考虑其他费用,那么该汽车从甲地到乙地的总费用最低是____________元,此时车速是
__________km/h.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.随着智能手机的日益普飞,中学生使用手机对学校管理和学生发展带来诸多不利影响.为保护学生视力,让学生在学校专心学习,防止
沉迷网络和游戏,促进学生身心健康发展,教育部于2021年1月15日下发文件《关于加强中小学生手机管理工作的通知》,对中小学生的手机使用和管理作出了相关的规定.某研究性学习小组调查研究“中学生使用智能手机对学习的影响”,对某校100名学生调查得到统计数据如下表(其中4yx=).不使用手机使用手机
合计学习成绩优秀人数34x学习成绩不优秀人数36y合计7030100(1)求x,y的值,并补全表中数据;(2)运用独立性检验思想,能否判断有99%的把握认为中学生使用手机对学习有影响?参考公式及数据:()()(
)()()22nadbcKabcdacbd−=++++,其中nabcd=+++.()20PKk0.150.100.050.0250.0100.0050.0010k2.0722.7063.8415.0246.6357
.87910.82818.甲、乙两队进行篮球决赛,因为疫情防控需要,取消主客场,两队比赛在某“中立”场馆举行,并采取五场三胜制(当一队赢得三场胜利时,该队获胜,快赛结束).根据以往比赛成绩,甲队每场取胜的概率为35,且各场比赛结果
相互独立.(1)求甲队以3:1获胜的概率;(2)据资料统计,组织者在第一场比赛可获得门票收入200万元,以后每场比赛门票收入比上一场增加50万元,求组织者在此次比赛中获得门票总收入不少于1000万元的概率.19.从0,1
,2,3,4,5,6中任取3个偶数和2个奇数,组成没有重复数字的五位数.(1)求其中大于50000且能被5整除的个数;(2)求其中3个偶数从左到右按由小到大排序的个数.20.已知函数()2()fxxxab=−+在1x=处取得极大值.(1)求a的值;(2)若4
0b−,证明:()fx有且只有3个零点.21.消费扶贫是指社会各界通过消费来自贫困地区和贫困人口的产品与服务,帮助贫困人口增收脱贫的一种扶贫方式,是社会力量参与脱贫攻坚的重要途径.大力实施消费扶贫,有利于动员社会各界扩大贫
困地区产品和服务消费,调动贫困人口依靠自身努力实现脱贫致富的积极性,促进贫困人口稳定脱贫和贫困地区产业持续发展.某地为了解消费扶贫对贫困户帮扶情况,随机抽取80户进行调查,并用打分来进行评估,满分为10
分.下表为80户贫困户所打分数X的频数统计:分数X5678910频数482024168(1)求贫困户所打分数的平均值;(2)从打分不低于8分的贫困户中,用分层抽样的方法随机抽取12户.(i)分别求抽到打分为8,9,10的贫困户的户数;(ii)从以上12户中任意抽取两户,记他们所打分数之和为
Y,求Y的分布列.22.已知函数2()2lnxfxxeaxx=−−,aR,曲线()yfx=在点()()1,1f处的切线过点2,03.(1)求a的值;(2)若()fx在0xx=处取得最小值,求020lnxex的值.莆田市2020—202
1学年下学期期末质量监测高二数学试题参考解答及评分标准评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,
如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一
步应得的累加分数.4.只给整数分数.单项选择题和单空填空题不给中间分.一、选择题:每小题5分,满分40分.1.A2.D3.B4.C5.B6.C7.C8.A二、选择题:每小题5分,满分20分.(本题为多项选择题,每
小题中,全部选对得5分,部分选对得2分,有选错得0分)9.BCD10.AC11.BC12.ABD三、填空题:每小题5分,满分20分.(16题第一空2分,第二空3分)13.i14.1015.(0,2)16.210,60四、解答题:本题共6小题,共70分.解答应写出文字说明
、证明过程或演算步骤.17.本小题主要考查独立性检验等基础知识.考查概率与统计思想.考查数据分析和数学运算等核心素养.体现基础性和应用性.满分10分.解:(1)由己知3436100xy+++=可得30xy+=,·······
···································1分与4yx=联立,得6,24.xy==······························································2分
补全表中所缺数据如下:不使用手机使用手机合计学习成绩优秀人数34640学习成绩不优秀人数362460合计7030100·············································································
······················4分(2)假设0H:使用手机与学习成绩无关,··················································5分由列联表知22100(34243
66)70304060K−=···············································6分507.1436.6357=.················································
8分因为2(6.635)0.01PK=≥,所以有99%的把握认为中学生使用手机对学习有影响.····························10分18.本小题主要考查计数原理、概率运算等基础知识.考查运算求解能
力、应用意识.考查分类与整合思想、概率与统计思想.考查逻辑推理、数学运算等核心素养.体现基础性、综合性与应用性.满分12分.解:(1)由已知得第4场甲队获胜,前3场甲队胜2场负1场,····························1分甲队以3:1获胜的概率为22332316
2555625PC==.·································4分(2)(法一)因为2002503007501000++=,200250300350110
01000+++=,所以要使组织者获得门票总收入不少于1000万元,本次比赛至少打4场.···································································
································5分打4场时,甲队获胜的概率为162625,乙队获胜的概率为22323272555625C=,······························7分
所以打4场的概率为116272234625625625P=+=;········································8分若打5场,则前四场甲、乙两队各胜两场,·····································
····9分所以打5场的概率为222243221655625PC==,···································11分所以组织者在此次比赛中获得的门票总收入不少于1000万元的概率为12234
2161862562525PP+=+=.······························································12分(法二)因为2002503007501000++=,20025030
035011001000+++=,所以要使组织者获得门票总收入不少于1000万元,本次比赛至少打4场.························································
···········································5分因为比赛采用五场三胜制,所以“比赛至少打4场”的对立事件为“比赛只打3场”,···························6分甲队以3:0获胜的概率为33275125=,·········
·······································8分乙队以3:0获胜的概率为3285125=,················································10分故比赛至少打4场的概率为27818112512
525−−=.····································12分所以组织者在此次比赛中获得的门票总收入不少于1000万元的概率为1825.19.本小题主要考查计数原理、排列与组合等基础知识.
考查运算求解能力、应用意识.考查分类与整合思想.考查数学运算、逻辑推理等核心素养.体现基础性与应用性.满分12分.解:(1)当首位为5时,个位数只能是0,从余下3个偶数取2个有23C种选法,2个奇数取1
个有12C种选法,将以上3个数全排列有33A种排法,根据分步计数原理,一共有21332336CCA=个;················2分当首位为6时,个位数是0或5,①当个位数为5时,从余下3个偶数取2个有23C种选法,2个奇数取1个有12C种选法,
将以上3个数全排列有33A种排法,根据分步计数原理,一共有21332336CCA=个;··············································································
·····················4分②当个位数为0时,从余下2个偶数取一个有12C种选法,3个奇数取2个有23C种选法,将以上3个数全排列有33A种排法,根据分步计数原理,一共有12323336CCA=个;
···································································································6分根据分类计数原理,大于50000且被能5整除的数共有363636108++=个.
···································································································7分(2)当所选的偶数含0时,从余下的3个偶数再取2个有23C种选法,3个奇数取
2个有23C种选法,因为首位不能为0,所以首位只能排奇数,有12C种选法,在后四个位置选1个排另一个奇数,有14C种选法,剩下位置排三个偶数有1种排法,根据分步计数原理,一共有2211332472CCCC=个;
·····································9分当所选的偶数不含0时,偶数只有1种选法,3个奇数取2个有23C种选法,从五个位置选2个排奇数有25A种排法,剩下位置排三个偶数有1种排法,根据分步计数原理,一共有223560CA=个,················
·························11分根据分类计数原理,3个偶数从左到右按由小到大排序共有7260132+=个.·····························································
······································12分20.本小题主要考查函数的零点、导数及其应用等基础知识.考查推理论证、运算求解、创新意识等能力.考查函数与方程、化归与转化、分类与整合、数形结合等数学思想.考查逻辑
推理、直观想象、数学运算等核心素养.体现基础性与综合性.满分12分.解:(1)因为()()23222fxxxabxaxaxb=−+=−++,······································1分所以()2234fxx
axa=−+,·····························································2分因为()fx在1x=处取得极大值,所以()21430faa=−
+=,·····························································3分解得1a=或3a=,···························
··············································4分经检验,当1a=时,()fx在1x=处取得极小值,不合题意,舍去;········5分当3a=时,()fx在1x=处取得极大值,满足题意;所以3a=.·····
··············································································6分(2)由(1)可得()3269fxxxxb=−++,所以()
()()23129313fxxxxx=−+=−−,········································7分当(),1x−或()3,x+时,()0fx,当()1,3x时,()0fx,·····8分所以
()fx单调递增区间为(),1−和()3,+,单调递减区间为()1,3,······9分又因为40b−,所以()()()()00,140,30,440fbfbfbfb==+==+,···············11分根据零点存在性定理,得()fx有且只有3个零
点.·······························12分21.本小题主要考查分层抽样、平均数、分布列等基础知识.考查运算求解、数据处理、应用意识等能力.考查概率与统计等数学思想.考查数据分析、数学运算等核心素养.体现基础性与应
用性.满分12分.解:(1)54687208249161087.880x+++++==.·································2分(2)(ⅰ)由频数统计表可知,打分为8,9,10的贫困户比例为3:2:1,所以随机抽取12户,其中打
8分的贫困户有31266=户,·····················3分打9分的贫困户有21246=户,··············································
········4分打10分的贫困户有11226=户.·······················································5分(ⅱ)由题意可知Y的所有可能取值为16,17,18,19,
20.···································6分26212155(16)6622CPYC====,···························································7分
1164212244(17)6611CCPYC====,···························································8分112624212183(18)6611CCCPYC+
====,·····················································9分114221284(19)6633CCPYC====,··························································10
分222121(20)66CPYC===.···································································11分则Y的分布列为Y1617181920P522411311433166·················
················································································12分22.本小题主要考查导数及其应用等基础知识.考查
推理论证、运算求解、创新意识等能力.考查函数与方程、化归与转化、分类与整合等数学思想.考查逻辑推理、直观想象、数学运算等核心素养.体现综合性与创新性.满分12分.解:(1)因为()2e2lnxfxxaxx=−−,所以
()1efa=−,···································1分()()222exfxxxax=+−−,··············································
············2分故曲线()yfx=在点()1,ea−处的切线斜率()13e2kfa==−−,·············3分又因为曲线()yfx=在点()1,ea−处的切线过点2,03
,所以e3e3213aka−==−−,··································································4分故3e23e3aa−−=−,解得1a=,
·····················································5分所以a的值为1.(2)当1a=时,()2e2lnxfxxxx=−−,()()()2212e12exxfxxxxxxx=+−−=+
−,0x.······························6分令()1exgxxx=−,0x,则()21(1)e0xgxxx=++,故()gx在区间()0,+单调递增,·······································
················7分因为()1e20,1e1022gg=−=−,··············································8分所以存在唯一实数01,12x,使得()0
0gx=,即0001e0xxx−=,所以0201exx=,即00ln2xx=−.····························································9分当()00,xx时,()0gx,从而()0fx,当()0,xx+时,()0g
x,从而()0fx,所以()fx在区间()00,x单调递减,在区间()0,x+单调递增,·················10分故当0xx=时,()fx取得最小值,·················································
····11分所以022002011eln24xxxx=−=.························································12分法二:令()
e1xhxx=−−,则()e1xhx=−,····················································6分显然()hx在R上单调递增,且()00h=,所以当(),0x−时,()0hx,当()0,x+时,()0hx,所以()
hx在区间(),0−单调递减,在区间()0,+单调递增,······················7分故()()0hxh≥,即e1xx−≥,当且仅当0x=时,等号成立.故当1a=时,()()22lne2lne2ln1
xxxfxxxxxx+=−−=−+≥,当且仅当2ln0xx+=时,等号成立,······················································8分设()2lngxxx=+,则()
gx在区间()0,+单调递增,且1120eeg=−,()110g=,·············9分所以存在唯一实数01,1ex,使得()00gx=,故当0xx=时,()fx取得最小值,最小值为1.··················
·······················10分由002ln0xx+=,得00ln2xx=−,即0201exx=,········································11分所
以022002011eln44xxxx==.·································································12分