2021-2022学年高中数学人教A版选修1-1教案:1.1.2、3四种命题、四种命题间的相互关系 3 含解析【高考】

DOC
  • 阅读 1 次
  • 下载 0 次
  • 页数 11 页
  • 大小 394.000 KB
  • 2024-11-06 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
2021-2022学年高中数学人教A版选修1-1教案:1.1.2、3四种命题、四种命题间的相互关系 3 含解析【高考】
可在后台配置第一页与第二页中间广告代码
2021-2022学年高中数学人教A版选修1-1教案:1.1.2、3四种命题、四种命题间的相互关系 3 含解析【高考】
可在后台配置第二页与第三页中间广告代码
2021-2022学年高中数学人教A版选修1-1教案:1.1.2、3四种命题、四种命题间的相互关系 3 含解析【高考】
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的4 已有1人购买 付费阅读2.40 元
/ 11
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】2021-2022学年高中数学人教A版选修1-1教案:1.1.2、3四种命题、四种命题间的相互关系 3 含解析【高考】.doc,共(11)页,394.000 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-a1dfada995ea76904e0e74e519865b34.html

以下为本文档部分文字说明:

-1-1.1.2四种命题1.1.3四种命题间的相互关系一:教法分析●三维目标1.知识与技能初步理解原命题、逆命题、否命题、逆否命题这四种命题的概念,掌握四种命题的形式;初步理解四种命题间的相互关系并能判断命题的真假.2.过程与

方法培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养学生抽象概括能力和思维能力.3.情感、态度与价值观激发学生学习数学的兴趣和积极性,优化学生的思维品质,培养学生勤于思考,勇于探索的创新意识,感受探索的乐趣.●重点、难点重

点:四种命题之间相互的关系.难点:正确区分命题的否定形式及否命题.通过一个生活中的场景引出逻辑在生活中必不可少的重要地位,从而引发学生学习四种命题的兴趣,然后主要通过对概念的讲解和分析,并配以适量的课堂练习,让学生掌握四种命题的概念,会写四种命题,并掌握四种命题之间的

关系以及通过逆否命题来判断命题的真假;最后运用所学命题知识解决实际生活中的问题,让学生学会用理性的逻辑推理能力思考问题,从而突破重难点.二:方案设计●教学建议这节内容是以概念的理解和关系的思辨为主的,因此采用以讲解和练习强化为主要方法,并在讲解过程中引导和启发学生的思维,

让学生充分地思考和动手演练.宜采取的教学方法:(1)启发式教学.这能充分调动学生的主动性和积极性,有利于学生对知识进行主动建构,从而发现数学规律;(2)讲练结合法.这样更能突出重点、解决难点,让学生的分析问题和解决问题的能力得到进一

步的提高.学习方法:(1)由特殊到一般的化归方法:学习中学生在教师的引导下,通过具体的实例,让学生去观察、讨论、探索、分析、发现、归纳、概括;(2)讲练结合法:让学生知道数学重生在运用,从而检验知识的应用情况,找出未掌握的内容及其差距并及时加以补救.-2-通

过本节的学习,了解命题的四种形式及其关系,利用原命题与逆否命题,逆命题与否命题之间的等价性解决有关问题,渗透由特殊到一般的化归数学思想.●教学流程创设问题情境,给出四个命题,引出问题:四个命题的条件与结论有何区别与

联系?⇒引导学生观察、比较、分析,得出四种命题的概念与他们之间的相互关系.⇒通过引导学生回答所提问题,层层深入地得出四种命题真假的关系.⇒通过例1及其变式训练,使学生掌握四种命题的概念及相互转化.⇒通过例2及其互动探究,

使学生掌握四种命题真假的判断方法.⇒错误!⇒错误!⇒错误!三、自主导学课标解读1.了解四种命题的概念,会写出某命题的逆命题、否命题和逆否命题.(重点)2.认识四种命题之间的关系以及真假性之间的关系.(难点

)3.利用命题真假的等价性解决简单问题.(难点,易错点)四种命题的概念【问题导思】给出以下四个命题:(1)对顶角相等;(2)相等的两个角是对顶角;(3)不是对顶角的两个角不相等;(4)不相等的两个角不是对顶角;1.你能说出命题(1)与(2)的条件与结论有什么关系吗?【提示】

它们的条件和结论恰好互换了.2.命题(1)与(3)的条件与结论有什么关系?命题(1)与(4)呢?【提示】命题(1)的条件与结论恰好是命题(3)条件的否定和结论的否定.命题(1)的条件和结论恰好是命题(4)结论的否定和条件的否定.一般

地,对于两个命题,如果一个命题的条件与结论分别是另一个命题的结论和条件,那么把这两个命题叫做互逆命题,如果是另一个命题条件的否定和结论的否定,那么把两个-3-命题叫做互否命题.如果是另一个命题结论的否定和条件的否定

,那么把这样的两个命题叫做互为逆否命题.把第一个叫做原命题时,另三个可分别称为原命题的逆命题、否命题、逆否命题.四种命题的关系【问题导思】1.为了书写方便常把p与q的否定分别记作“綈p”和“綈q”,如果原命题是“若p,则q”,那么它的逆命题,否命题

,逆否命题该如何表示?【提示】逆命题:若q,则p.否命题:若綈p,则綈q.逆否命题:若綈q,则綈p.2.原命题的否命题与原命题的逆否命题之间是什么关系?原命题的逆命题与其逆否命题之间是什么关系?原命题的逆命题与其否命题呢?【提示】互逆、互否、互为逆否.四种命题的相互关系四种命题的真假关系【

问题导思】1.知识1的“问题导思”中四个命题的真假性是怎样的?【提示】(1)真命题,(2)假命题,(3)假命题,(4)真命题.2.如果原命题是真命题,它的逆命题是真命题吗?它的逆否命题呢?【提示】原命题

为真,其逆命题不一定为真,但其逆否命题一定为真.1.在原命题的逆命题、否命题、逆否命题中,一定与原命题真假性相同的是逆否命题.2.两个命题互为逆命题或互为否命题时,它们的真假性没有关系.四、互动探究四种命题的概念-4-例1把下列命题改写成“若p,则q”的形式,并写出它们的逆命题、否命题

与逆否命题.(1)全等三角形的对应边相等;(2)当x=2时,x2-3x+2=0.【思路探究】(1)原命题的条件与结论分别是什么?(2)把原命题的条件与结论作怎样的变化就能写出它的逆命题、否命题和逆否命题?【自主解答】(1)原命题:若两个三角形全等,则这两个三角形三边对应相等.逆命题:若两

个三角形三边对应相等,则两个三角形全等.否命题:若两个三角形不全等,则两个三角形三边对应不相等.逆否命题:若两个三角形三边对应不相等,则这两个三角形不全等.(2)原命题:若x=2,则x2-3x+2=0,逆命题:若x2-3x+2=0,则x=2,否命题:若x≠2,则x2-3x+2

≠0,逆否命题:若x2-3x+2≠0,则x≠2.(一)规律方法1.给出一个命题,写出该命题的其他三种命题时,首先考虑弄清所给命题的条件与结论,若给出的命题不是“若p,则q”的形式,应改写成“若p,则q”的形式.2.把原命题的结论作为条件,条件作为结论就得

到逆命题;否定条件作为条件,否定结论作为结论便得到否命题;否命题的逆命题就是原命题的逆否命题.(二)变式训练分别写出下列命题的逆命题、否命题和逆否命题.(1)负数的平方是正数;(2)若a>b,则ac2>

bc2.【解】(1)原命题可以改写成:若一个数是负数,则它的平方是正数;逆命题:若一个数的平方是正数,则它是负数;否命题:若一个数不是负数,则它的平方不是正数;逆否命题:若一个数的平方不是正数,则它不是负数.(2)逆命题:若ac2>bc2,则

a>b;否命题:若a≤b,则ac2≤bc2;逆否命题:若ac2≤bc2,则a≤b.四种命题真假的判断例2写出下列命题的逆命题、否命题、逆否命题,然后判断真假.-5-(1)菱形的对角线互相垂直;(2)等高的两个三角形是全等三角形;(3)弦的垂直平分线平分弦所对的弧.【思路探究

】确定条件与结论→写出三种命题→判断真假【自主解答】(1)逆命题:若一个四边形的对角线互相垂直,则它是菱形,是假命题.否命题:若一个四边形不是菱形,则它的对角线不互相垂直,是假命题.逆否命题:若一个四边形的对角线不互相垂直,则这个四边形不是菱形,是真命题.(2)逆命题:若两个三角形全等,则

这两个三角形等高,是真命题.否命题:若两个三角形不等高,则这两个三角形不全等,是真命题.逆否命题:若两个三角形不全等,则这两个三角形不等高,是假命题.(3)逆命题:若一条直线平分弦所对的弧,则这条直线是弦的垂直平分线,是假命题.否命题:若一条直线不是弦的垂直平分线,则这条直线不平分弦所对的弧

,是假命题.逆否命题:若一条直线不平分弦所对的弧,则这条直线不是弦的垂直平分线,是真命题.(一)规律方法1.本例题目中命题的条件和结论不明显,为了不出错误,可以先改写成“若p,则q”的形式,再写另外三种命题,进而判断真假.2.要判定四种命题的真假,首先,要正确理解四种命

题间的相互关系;其次,正确利用相关知识进行判断推理.若由“p经逻辑推理得出q”,则命题“若p,则q”为真;确定“若p,则q”为假时,则只需举一个反例说明.3.互为逆否命题等价.当一个命题的真假不易判断时,可通过判定其逆否命题的真假来判断.(二)变式训练下列命题中正确的是(

)①“若x2+y2≠0,则x,y不全为零”的否命题;②“正三角形都相似”的逆命题;③“若m>0,则x2+x-m=0有实根”的逆否命题.A.①②③B.①③C.②③D.①【解析】①原命题的否命题为“若x2+y2=0,则x,y全为零”.真命题.②原命题的逆命题

为“若两个三角形相似,则这两个三角形是正三角形.”假命题.③原命题的逆否命题为“若x2+x-m=0无实根,则m≤0”.-6-∵方程x2+x-m=0无实根,∴判别式Δ=1+4m<0,m<-14.故m≤0,为真命题.故正确的命题是①,③选B.【答案】B等价命题

的应用例3若a2+b2=c2,求证:a,b,c不可能都是奇数.【思路探究】(1)a,b,c不可能都是奇数包含几种情况?(2)它的反面是什么?能否考虑证它的逆否命题?【自主解答】若a,b,c都是奇数,则a2,b2,c2都是奇数,所以a2+b2为偶数,而c2

为奇数,即a2+b2≠c2.即原命题的逆否命题为真命题,故原命题为真,所以若a2+b2=c2,则a、b、c不可能都是奇数.(一)规律方法1.因为“a、b、c不可能都是奇数”这一结论包含多种情况,而其否定只有一种情况,即“a、b、c都是奇数,”故应选择证明它的逆否命题为真命题,以使问题简

单化.2.当判断一个命题的真假比较困难,或者在判断真假时涉及到分类讨论时,通常转化为判断它的逆否命题的真假,因为互为逆否命题的真假是等价的,也就是我们讲的“正难则反”的一种策略.3.四种命题中,原命题与其逆否命题是等价的,有相同的真假性,原命题的否命题与其逆命题也是互为逆否命题,解题时不要忽

视.(二)变式训练“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集是空集,则a<2”,判断其逆否命题的真假.【解】∵a,x∈R,且x2+(2a+1)x+a2+2≤0的解集是空集.

∴Δ=(2a+1)2-4(a2+2)<0,则4a-7<0,解得a<74.因此a<2,原命题是真命题.又互为逆否命题的命题等价,故逆否命题是真命题.五、易误辨析-7-因否定错误致误典例写出命题“若x2+y2=0,则x,y全

为零”的逆命题、否命题,并判断它们的真假.【错解】逆命题:若x,y全为零,则x2+y2=0,是真命题;否命题:若x2+y2≠0,则x,y全不为零,是假命题.【错因分析】本题中的错解主要是对原命题中结论的否定错误.对“x,y全为零”的否定,应为“x,y不全为零”,而不是“x,y全不为零”

.【防范措施】要写出一个命题的否命题,需要既否定条件,又否定结论,否定时一定要注意一些词语,如“都是”的否定是“不都是”,而不是“都不是”等等.【正解】逆命题:若x,y全为零,则x2+y2=0,是真命题;否命题:若x2+y2≠0,则x,y不全为零,是真

命题.六、课堂小结1.写出四种命题的方法:(1)交换原命题的条件和结论,所得的命题是逆命题;(2)同时否定原命题的条件和结论,所得的命题是否命题;(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.2.四种命题的真假关系:若原命题为真,它的

逆命题、否命题不一定为真,它的逆否命题一定为真;互为逆否命题的两个命题的真假性相同.因此,若一个命题的真假不易判断时,我们可借助它的逆否命题进行判断.七、双基达标1.(2013·福州高二检测)已知a,b∈R,命题“若a+b=1,则

a2+b2≥12”的否命题是()A.若a2+b2<12,则a+b≠1B.若a+b=1,则a2+b2<12C.若a+b≠1,则a2+b2<12D.若a2+b2≥12,则a+b=1【解析】“a+b=1”,“a2+b2≥12

”的否定分别是“a+b≠1”,“a2+b2<12”,故否命题为:“若a+b≠1,则a2+b2<12”.【答案】C2.命题“两条对角线相等的四边形是矩形”是命题“矩形是两条对角线相等的四边形”的-8-()A.逆命题B.否命题C.逆

否命题D.无关命题【解析】从两种命题的形式来看是条件与结论换位,因此为逆命题.【答案】A3.命题“当x=2时,x2+x-6=0”的逆否命题是____.【解析】原命题结论的否定作条件,条件的否定作结论,写出逆否命题即可.【答案】当x2+x-

6≠0时,x≠2.4.写出下列命题的逆命题、否命题和逆否命题,并判断命题的真假.(1)若mn<0,则方程mx2-x+n=0有实数根;(2)若ab=0,则a=0或b=0.【解】(1)逆命题:若方程mx2-x+n=0有实数根,则mn<0.假命题;否命题:若mn≥0,则方程

mx2-x+n=0没有实数根.假命题;逆否命题:若方程mx2-x+n=0没有实数根,则mn≥0.真命题.(2)逆命题:若a=0或b=0,则ab=0.真命题;否命题:若ab≠0,则a≠0且b≠0.真命题;逆否命题:若a≠0且b≠0,则ab≠0.真命题

.八、知能检测一、选择题1.命题“若綈p,则q”是真命题,则下列命题一定是真命题的是()A.若p,则綈qB.若q,则綈pC.若綈q,则pD.若綈q,则綈p【解析】若“綈p,则q”的逆否命题是“若綈q,则p”,又互为逆否命题真假性相同.∴“若綈q,则p”一定是真命题.【答案】C2.若

命题p的否命题为q,命题p的逆否命题为r,则q与r的关系是()A.互逆命题B.互否命题C.互为逆否命题D.以上都不正确【解析】设p为“若A,则B”,那么q为“若綈A,则綈B”,r为“若綈B,则綈A”,故q与r为互逆命

题.【答案】A3.(2013·台州高二检测)已知命题p:若a>0,则方程ax2+2x=0有解,则其原命题、否-9-命题、逆命题及逆否命题中真命题的个数为()A.3B.2C.1D.0【解析】易知原命题和逆否命题都是真命题

,否命题和逆命题都是假命题.故选B.【答案】B4.(2013·大庆高二检测)下列判断中不正确的是()A.命题“若A∩B=B,则A∪B=A”的逆否命题为真命题B.“矩形的两条对角线相等”的逆否命题为真命题C.“已知a,b,m∈R,若am2<bm2,则a<b”的逆命题是真

命题D.“若x∈N*,则(x-1)2>0”是假命题【解析】若A∩B=B,则有B⊆A,从而有A∪B=A,∴A正确;B中的逆否命题:“若一个四边形两条对角线不相等,则它不是矩形”为真命题∴B正确.C中的逆命题为:“已知a,b,m∈R,若a<b,则am2<bm2为假命题,故C不正确.D中x=1时

,(x-1)2=0显然是假命题.故D正确.【答案】C5.下列命题中,不是真命题的为()A.“若b2-4ac≥0,则关于x的一元二次方程ax2+bx+c=0(a≠0)有实根”的逆否命题B.“四边相等的四边形是正方形”的逆命题C.“若x2

=9,则x=3”的否命题D.“对顶角相等”的逆命题【解析】A中命题为真命题,其逆否命题也为真命题;B中命题的逆命题为“正方形的四边相等”,为真命题;C中命题的否命题为“若x2≠9,则x≠3”为真命题;D中命题的逆命题为“相等的角为对顶角”是假命

题.【答案】D二、填空题6.命题“若A∪B=B,则A⊆B”的否命题是________.【答案】若A∪B≠B,则A⃘B.7.已知命题“若m-1<x<m+1,则1<x<2”的逆命题为真命题,则m的取值范围是________.【解析】由已知得,若

1<x<2成立,则m-1<x<m+1也成立.-10-∴m-1≤1m+1≥2,∴1≤m≤2.【答案】[1,2]8.(2013·菏泽高二检测)给定下列命题:①若a>0,则方程ax2+2x=0有解.②“等腰三角形都相似”的逆命题;③“若x-32是有理数,则x是无理数”的逆否命题;④“若

a>1且b>1,则a+b>2”的否命题.其中真命题的序号是________.【解析】显然①为真,②为假.对于③中,原命题“若x-32是有理数,则x是无理数”为假命题,∴逆否命题为假命题.对于④中,“若a>1且b>1,则a+b>2”的否命题是“若a≤1或

b≤1,则a+b≤2”为假命题.【答案】①三、解答题9.设原命题是“当c>0时,若a>b,则ac>bc”,写出它的逆命题、否命题、逆否命题,并分别判断它们的真假.【解】原命题是真命题.逆命题是“当c>0时,若ac>bc,则a>b”,是真命题.否命题是“当c>0时,若a≤b,则ac≤bc”,

是真命题.逆否命题是“当c>0时,若ac≤bc,则a≤b”,是真命题.10.已知命题p:“若ac≥0,则二次方程ax2+bx+c=0没有实根”.(1)写出命题p的否命题;(2)判断命题p的否命题的真假,并证明你的结论.【解】(1)命题p的否命题为:“若ac<0,则二次方程a

x2+bx+c=0有实根”.(2)命题p的否命题是真命题,证明如下:∵ac<0,∴-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根.∴该命题是真命题.11.已知奇函数f(x)是定义域为R的增函数,a,b∈R,若f(a)+f(b)

≥0,求证:a+b≥0.【证明】假设a+b<0,则a<-b.-11-∵f(x)在R上是增函数.∴f(a)<f(-b),又∵f(x)为奇函数.∴f(-b)=-f(b),∴f(a)<-f(b).即f(a)+f(b)<0.∴原命题的逆否命题为真

,故原命题为真.九、备课资源(一)备选例题判断命题“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题的真假.【解】∵m>0,∴12m>0,∴12m+4>0.∴方程x2+2x-3m=0的判别式Δ=22-4×1×(-3m)=4+12m>0,∴原命题“若m>0,则方程x2+2x-3m=0有实数

根”为真.又∵原命题与它的逆否命题等价,∴“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题为真.(二)备选变式已知ad-bc=1,求证:a2+b2+c2+d2+ab+cd≠1.【证明】设a2+b2+c2+d2+ab+cd=1,则2a2+2b2+2c2+2d2+2ab+2bc+2

cd-2ad-2bc+2ad=2,即(a+b)2+(b+c)2+(c+d)2+(a-d)2+2ad-2bc=2,若(a+b)2+(b+c)2+(c+d)2+(a-d)2=0,则a=b=c=d=0,于是ad-bc<1;若(a+b)2+(b+c)2+(c+d)2+

(a-d)2≠0,则(a+b)2+(b+c)2+(c+d)2+(a-d)2为正数,所以必有ad-bc<1.综上,命题“若a2+b2+c2+d2+ab+cd=1,则ad-bc≠1”成立,由原命题与它的逆否命题等价,知原命题也成立,从而原命题得证.

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 326073
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?