专题20 电学计算题(原卷版)

DOC
  • 阅读 1 次
  • 下载 0 次
  • 页数 21 页
  • 大小 2.339 MB
  • 2025-03-14 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【管理员店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
专题20 电学计算题(原卷版)
可在后台配置第一页与第二页中间广告代码
专题20 电学计算题(原卷版)
可在后台配置第二页与第三页中间广告代码
专题20 电学计算题(原卷版)
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的5 已有1人购买 付费阅读2.40 元
/ 21
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】专题20 电学计算题(原卷版).doc,共(21)页,2.339 MB,由管理员店铺上传

转载请保留链接:https://www.doc5u.com/view-9f33f0653744844bbcd60e0304309565.html

以下为本文档部分文字说明:

1专题20电学计算题【2020年】1.(2020·新课标Ⅰ)在一柱形区域内有匀强电场,柱的横截面积是以O为圆心,半径为R的圆,AB为圆的直径,如图所示。质量为m,电荷量为q(q>0)的带电粒子在纸面内自A点先后以不同的速度进入电场,速度方向与电场的方向垂直。已知刚

进入电场时速度为零的粒子,自圆周上的C点以速率v0穿出电场,AC与AB的夹角θ=60°。运动中粒子仅受电场力作用。(1)求电场强度的大小;(2)为使粒子穿过电场后的动能增量最大,该粒子进入电场时的速度应为多大?(3)为使粒子穿过电场前后动量变化量的大

小为mv0,该粒子进入电场时的速度应为多大?2.(2020·新课标Ⅱ)如图,在0≤x≤h,y−+区域中存在方向垂直于纸面的匀强磁场,磁感应强度B的大小可调,方向不变。一质量为m,电荷量为q(q>0)的粒子以速度v0从磁场区域左侧沿x轴进入磁场,不计重力。(1)若粒子经磁

场偏转后穿过y轴正半轴离开磁场,分析说明磁场的方向,并求在这种情况下磁感应强度的最小值Bm;(2)如果磁感应强度大小为m2B,粒子将通过虚线所示边界上的一点离开磁场。求粒子在该点的运动方向与x轴正方向的夹角及该点到x轴的距离。3.

(2020·浙江卷)如图1所示,在绝缘光滑水平桌面上,以O为原点、水平向右为正方向建立x轴,在01.0mx区域内存在方向竖直向上的匀强磁场。桌面上有一边长0.5mL=、电阻0.25R=的正方形线框abcd,当平行于磁场边界的cd边进入磁场时,在沿x方向的

外力F作用下以1.0m/sv=的速度做2匀速运动,直到ab边进入磁场时撤去外力。若以cd边进入磁场时作为计时起点,在01.0st内磁感应强度B的大小与时间t的关系如图2所示,在01.3st内线框始终做匀速运动。(1)求外力F的大小;(2)在1.0s1.3st内存在连续变化

的磁场,求磁感应强度B的大小与时间t的关系;(3)求在01.3st内流过导线横截面的电荷量q。4.(2020·浙江卷)某种离子诊断测量简化装置如图所示。竖直平面内存在边界为矩形EFGH、方向垂直纸面向外、磁感应强度大小为

B的匀强磁场,探测板CD平行于HG水平放置,能沿竖直方向缓慢移动且接地。a、b、c三束宽度不计、间距相等的离子束中的离子均以相同速度持续从边界EH水平射入磁场,b束中的离子在磁场中沿半径为R的四分之一圆弧运动后从下边界HG竖直向下

射出,并打在探测板的右边缘D点。已知每束每秒射入磁场的离子数均为N,离子束间的距离均为0.6R,探测板CD的宽度为0.5R,离子质量均为m、电荷量均为q,不计重力及离子间的相互作用。(1)求离子速度v的大小及c束中

的离子射出磁场边界HG时与H点的距离s;(2)求探测到三束离子时探测板与边界HG的最大距离maxL;(3)若打到探测板上的离子被全部吸收,求离子束对探测板的平均作用力的竖直分量F与板到HG距离L的关系。5.(2020·江苏卷)如图所示,

电阻为0.1Ω的正方形单匝线圈abcd的边长为0.2m,bc边与匀强磁场3边缘重合。磁场的宽度等于线圈的边长,磁感应强度大小为0.5T。在水平拉力作用下,线圈以8m/s的速度向右穿过磁场区域。求线圈在上述过程中:(1)感应电动势的大小E;(2)所受拉力的

大小F;(3)感应电流产生的热量Q。6.(2020·江苏卷)空间存在两个垂直于Oxy平面的匀强磁场,y轴为两磁场的边界,磁感应强度分别为02B、03B。甲、乙两种比荷不同的粒子同时从原点O沿x轴正向射入磁场,速度均为v。甲第1次、第2次经过y轴

的位置分别为P、Q,其轨迹如图所示。甲经过Q时,乙也恰好同时经过该点。已知甲的质量为m,电荷量为q。不考虑粒子间的相互作用和重力影响。求:(1)Q到O的距离d;(2)甲两次经过P点的时间间隔t;(3)乙的比荷qm可能的最小值。7.(2020·山东卷)某型号质谱仪的工作原理如图甲所示

。M、N为竖直放置的两金属板,两板间电压为U,Q板为记录板,分界面P将N、Q间区域分为宽度均为d的I、Ⅱ两部分,M、N、P、Q所在平面相互平行,a、b为M、N上两正对的小孔。以a、b所在直线为z轴,向右为正方向,取z轴与Q板的交点O为坐标原点,以平行于Q板水平向里为x轴正方向,竖直向上为y轴正方向

,建立空间直角坐标系Oxyz。区域I、Ⅱ内分别充满沿x轴正方向的匀强磁场和匀强电场,磁感应强度大小、电场强度大小分别为B和E。一质量为m,电荷量为+q的粒子,从a孔飘入电场(初速度视为零),经b孔进入磁场,过P面上的c点4(图中未画出)进入电场,最终打到记录板Q上。不计粒子重力。(

1)求粒子在磁场中做圆周运动的半径R以及c点到z轴的距离L;(2)求粒子打到记录板上位置的x坐标;(3)求粒子打到记录板上位置的y坐标(用R、d表示);(4)如图乙所示,在记录板上得到三个点s1、s2、s3,若这三个点是质子11H、氚核3

1H、氦核42He的位置,请写出这三个点分别对应哪个粒子(不考虑粒子间的相互作用,不要求写出推导过程)。8.(2020·天津卷)多反射飞行时间质谱仪是一种测量离子质量的新型实验仪器,其基本原理如图所示,从离子源A处飘出的离子

初速度不计,经电压为U的匀强电场加速后射入质量分析器。质量分析器由两个反射区和长为l的漂移管(无场区域)构成,开始时反射区1、2均未加电场,当离子第一次进入漂移管时,两反射区开始加上电场强度大小相等、方向相反的匀强电场,其电场强度足够大,使

得进入反射区的离子能够反射回漂移管。离子在质量分析器中经多次往复即将进入反射区2时,撤去反射区的电场,离子打在荧光屏B上被探测到,可测得离子从A到B的总飞行时间。设实验所用离子的电荷量均为q,不计离子重力。(1)求质量为m的离子第一次通过漂移管所用的时间1

T;(2)反射区加上电场,电场强度大小为E,求离子能进入反射区的最大距离x;(3)已知质量为0m的离子总飞行时间为0t,待测离子的总飞行时间为1t,两种离子在质量分析器中反射相同次数,求待测离子质量1m

。59.(2020·天津卷)如图所示,垂直于纸面向里的匀强磁场,磁感应强度B随时间t均匀变化。正方形硬质金属框abcd放置在磁场中,金属框平面与磁场方向垂直,电阻0.1R=,边长0.2ml=。求(1)在0t=到0.1

st=时间内,金属框中的感应电动势E;(2)0.05st=时,金属框ab边受到的安培力F的大小和方向;(3)在0t=到0.1st=时间内,金属框中电流的电功率P。【2019年】1.(2019·新课标全国Ⅰ卷)如图,在直角三角形OPN区域内存在匀强磁场,磁感应强

度大小为B、方向垂直于纸面向外。一带正电的粒子从静止开始经电压U加速后,沿平行于x轴的方向射入磁场;一段时间后,该粒子在OP边上某点以垂直于x轴的方向射出。已知O点为坐标原点,N点在y轴上,OP与x轴的夹角为30°,粒子进入磁场的入射点与离开磁场的出射点之间的距离为d,不计重力。求(1)带电粒子

的比荷;(2)带电粒子从射入磁场到运动至x轴的时间。2.(2019·新课标全国Ⅱ卷)如图,两金属板P、Q水平放置,间距为d。两金属板正中间有一水平放置的金属网G,P、Q、G的尺寸相同。G接地,P、Q的电势均为(>0)。质量为m,电荷量为q(q>0)的6粒子自G的左端上方距离G为h的位

置,以速度v0平行于纸面水平射入电场,重力忽略不计。(1)求粒子第一次穿过G时的动能,以及它从射入电场至此时在水平方向上的位移大小;(2)若粒子恰好从G的下方距离G也为h的位置离开电场,则金属板的长度最短应为多少?3.(2019·新课标全国Ⅲ卷)空间存在一方向竖直向下的匀强电场,O、P是电

场中的两点。从O点沿水平方向以不同速度先后发射两个质量均为m的小球A、B。A不带电,B的电荷量为q(q>0)。A从O点发射时的速度大小为v0,到达P点所用时间为t;B从O点到达P点所用时间为2t。重力加速度为g,求(1)电场强度的大小

;(2)B运动到P点时的动能。4.(2019·北京卷)如图所示,垂直于纸面的匀强磁场磁感应强度为B。纸面内有一正方形均匀金属线框abcd,其边长为L,总电阻为R,ad边与磁场边界平行。从ad边刚进入磁场直至bc边刚要进入的过程中,线框在向左的拉力作用下

以速度v匀速运动,求:(1)感应电动势的大小E;(2)拉力做功的功率P;(3)ab边产生的焦耳热Q。5.(2019·北京卷)电容器作为储能器件,在生产生活中有广泛的应用。对给定电容值为C的电容器充电,无论采用何种充电方式,其两极间的电势差u随电荷量q的变化图像都相同。(1)请在图1

中画出上述u–q图像。类比直线运动中由v–t图像求位移的方法,求两极间电压为U时电容器所储存的电能Ep。7(2)在如图2所示的充电电路中,R表示电阻,E表示电源(忽略内阻)。通过改变电路中元件的参数对同一电容器进行两次充电,对应的q–t

曲线如图3中①②所示。a.①②两条曲线不同是______(选填E或R)的改变造成的;b.电容器有时需要快速充电,有时需要均匀充电。依据a中的结论,说明实现这两种充电方式的途径。(3)设想使用理想的“恒流源”替换(2)中电源对电容器充电,可实现电容器电荷量随时间均匀增加。请思考使用“恒流源”和(2

)中电源对电容器的充电过程,填写下表(选填“增大”、“减小”或“不变”)。“恒流源”(2)中电源电源两端电压通过电源的电流6.(2019·天津卷)如图所示,固定在水平面上间距为l的两条平行光滑金属导轨,

垂直于导轨放置的两根金属棒MN和PQ长度也为l、电阻均为R,两棒与导轨始终接触良好。MN两端通过开关S与电阻8为R的单匝金属线圈相连,线圈内存在竖直向下均匀增加的磁场,磁通量变化率为常量k。图中虚线右侧有垂直于导轨平面向下的匀强磁场,磁感应强度大小为B。PQ的质量为m,金属导轨

足够长,电阻忽略不计。(1)闭合S,若使PQ保持静止,需在其上加多大的水平恒力F,并指出其方向;(2)断开S,PQ在上述恒力作用下,由静止开始到速度大小为v的加速过程中流过PQ的电荷量为q,求该过程安培力做的功W。7.(2019·天津卷)2018年,人类历史上第一架由离子引擎推动的飞机诞生,

这种引擎不需要燃料,也无污染物排放。引擎获得推力的原理如图所示,进入电离室的气体被电离成正离子,而后飘入电极A、B之间的匀强电场(初速度忽略不计),A、B间电压为U,使正离子加速形成离子束,在加速过程中引擎获

得恒定的推力。单位时间内飘入的正离子数目为定值,离子质量为m,电荷量为Ze,其中Z是正整数,e是元电荷。(1)若引擎获得的推力为1F,求单位时间内飘入A、B间的正离子数目N为多少;(2)加速正离子束所消耗的功率P不同时,引擎获得的推力F也不同,试推导

FP的表达式;(3)为提高能量的转换效率,要使FP尽量大,请提出增大FP的三条建议。8.(2019·江苏卷)如图所示,匀强磁场中有一个用软导线制成的单匝闭合线圈,线圈平面与磁场垂直.已知线圈的面积S=0.3m2、电阻R

=0.6Ω,磁场的磁感应强度B=0.2T.现同时向两侧拉动线圈,线圈的两边在Δt=0.5s时间内合到一起.求线圈在上述过程中(1)感应电动势的平均值E;(2)感应电流的平均值I,并在图中标出电流方向;(3)通过导线

横截面的电荷量q.99.(2019·江苏卷)如图所示,匀强磁场的磁感应强度大小为B.磁场中的水平绝缘薄板与磁场的左、右边界分别垂直相交于M、N,MN=L,粒子打到板上时会被反弹(碰撞时间极短),反弹前后水平分速度不变,竖直分速度大小不变、方向相反.质量为m

、电荷量为-q的粒子速度一定,可以从左边界的不同位置水平射入磁场,在磁场中做圆周运动的半径为d,且d<L,粒子重力不计,电荷量保持不变。(1)求粒子运动速度的大小v;(2)欲使粒子从磁场右边界射出,求入射点到M的最大距离d

m;(3)从P点射入的粒子最终从Q点射出磁场,PM=d,QN=2d,求粒子从P到Q的运动时间t.10.(2019·浙江选考)如图所示,在间距L=0.2m的两光滑平行水平金属导轨间存在方向垂直于纸面(向内为正)的磁场,磁感应强度为分布沿y方向不变,沿x方向如下:10.2{50

.20.210.2TxmBxTmxmTxm=−−−导轨间通过单刀双掷开关S连接恒流源和电容C=1F的未充电的电容器,恒流源可为电路提供恒定电流I=2A,电流方向如图所示。有一质量m=0.1kg的金属棒ab垂直导轨静止放置

于x0=0.7m处。开关S掷向1,棒ab从静止开始运动,到达x3=-0.2m处时,开关S掷向2。已知棒ab在运动过程中始终与导轨垂直。求:10(提示:可以用F-x图象下的“面积”代表力F所做的功)(1)棒ab运动到x1=0.2m时的速度v1;(2)棒ab运动到x2=-0.1m时的速度v2;

(3)电容器最终所带的电荷量Q。4.6m/s2C7FBIL=FBILamm==()10122m/svaxx=−=0.2m0.2mx−5FxIL=()221252ILWxx=−22211122Wmvmv=−24.6m/sv=3BLQmvmv−=−QCUCBL

v==0.2xm=−312m/svv==3222C7CBLmvQCBLm==+11.(2019·浙江选考)小明受回旋加速器的启发,设计了如图1所示的“回旋变速装置”。两相距为d的平行金属栅极板M、N,板M位于x轴上,板N在它的正下方。两板间加上如图2所示的幅值为U0的交

变电压,周期02mTqB=。板M上方和板N下方有磁感应强度大小均为B、方向相反的匀强磁场。粒子探测器位于y轴处,仅能探测到垂直射入的带电粒子。有一沿x轴可移动、粒子出射初动能可调节的粒子发射源,沿y轴正方向射出质量为m、电荷量为q(q>0)的粒子。t=0时刻,发射源在(x,0)位置发射一带电粒子

。忽略粒子的重力和其它阻力,粒子在电场中运动的时间不计。(1)若粒子只经磁场偏转并在y=y0处被探测到,求发射源的位置和粒子的初动能;(2)若粒子两次进出电场区域后被探测到,求粒子发射源的位置x与被探测到的位置y之间的关系【2018年】1.(2018年全国Ⅰ卷)

如图,在y>0的区域存在方向沿y轴负方向的匀强电场,场强大小为E,在y<0的区域存在方向垂直于xOy平面向外的匀强磁场。一个氕核11H和一个氘核21H先后从y轴上y=h点以相同的动能射出,速度方向沿x轴正方向。已知11H进入磁场时,速度方向与x轴正方向的夹角为60°,并从坐标原点O处第一次射出磁

场。11H的质量为m,电荷量为q不计重力。求11(1)11H第一次进入磁场的位置到原点O的距离(2)磁场的磁感应强度大小(3)12H第一次离开磁场的位置到原点O的距离2.(2018年全国II卷)一足够长的条状区域内存在匀强电场和匀强

磁场,其在xoy平面内的截面如图所示:中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xoy平面;磁场的上、下两侧为电场区域,宽度均为,电场强度的大小均为E,方向均沿x轴正方向;M、N为条形区域边界上的两点,

它们的连线与y轴平行。一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出。不计重力。(1)定性画出该粒子在电磁场中运动的轨迹;(2)求该粒子从M点射入时速度

的大小;(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为,求该粒子的比荷及其从M点运动到N点的时间。123.(2018年全国Ⅲ卷)如图,从离子源产生的甲、乙两种离子,由静止经加速电压U加速后在纸面内水平向右运动,自M点垂直于磁场边界射入匀强磁场,磁场方向垂直于纸面向里,

磁场左边界竖直。已知甲种离子射入磁场的速度大小为v1,并在磁场边界的N点射出;乙种离子在MN的中点射出;MN长为l。不计重力影响和离子间的相互作用。求:(1)磁场的磁感应强度大小;(2)甲、乙两种离子的比荷之比。4.(2018年天津卷)如图所示,

在水平线ab的下方有一匀强电场,电场强度为E,方向竖直向下,ab的上方存在匀强磁场,磁感应强度为B,方向垂直纸面向里,磁场中有一内、外半径分别为R、的半圆环形区域,外圆与ab的交点分别为M、N。一质量为m、电荷量

为q的带负电粒子在电场中P点静止释放,由M进入磁场,从N射出,不计粒子重力。13(1)求粒子从P到M所用的时间t;(2)若粒子从与P同一水平线上的Q点水平射出,同样能由M进入磁场,从N射出,粒子从M到N的过程中,始终在环形区域中运动,且所用的时间最少,求粒子在

Q时速度的大小。5.(2018年天津卷)真空管道超高速列车的动力系统是一种将电能直接转换成平动动能的装置。图1是某种动力系统的简化模型,图中粗实线表示固定在水平面上间距为l的两条平行光滑金属导轨,电阻忽略不计,ab和cd是两根与导轨垂直,长度均为l,电阻均为R的金属棒,通过绝缘

材料固定在列车底部,并与导轨良好接触,其间距也为l,列车的总质量为m。列车启动前,ab、cd处于磁感应强度为B的匀强磁场中,磁场方向垂直于导轨平面向下,如图1所示,为使列车启动,需在M、N间连接电动势为E的直流电源,电源内阻及导线电阻忽略不计,列车启动后电源自动关

闭。(1)要使列车向右运行,启动时图1中M、N哪个接电源正极,并简要说明理由;(2)求刚接通电源时列车加速度a的大小;(3)列车减速时,需在前方设置如图2所示的一系列磁感应强度为B的匀强磁场区域,磁场宽度和相邻磁场间距均大于l。若某时刻列车的速度为,此时ab、cd均在无

磁场区域,试讨论:要使列车停下来,前方至少需要多少块这样的有界磁场?6.(2018年北京卷)如图1所示,用电动势为E、内阻为r的电源,向滑动变14阻器R供电。改变变阻器R的阻值,路端电压U与电流I均随之变化。(1)以U为纵坐标,I为横坐标,在图2中画出变阻器阻值R变化过程中U-I

图像的示意图,并说明U-I图像与两坐标轴交点的物理意义。(2)a.请在图2画好的U-I关系图线上任取一点,画出带网格的图形,以其面积表示此时电源的输出功率;b.请推导该电源对外电路能够输出的最大电功率及条件。(3)请写出电源电动势定义式,并结合能量守恒定律证明:电源电动势在数值上等于内

、外电路电势降落之和。7.(2018年江苏卷)如图所示,两条平行的光滑金属导轨所在平面与水平面的夹角为,间距为d.导轨处于匀强磁场中,磁感应强度大小为B,方向与导轨平面垂直.质量为m的金属棒被固定在导轨上,距底端的距离为s,导轨与外接电源相连,

使金属棒通有电流.金属棒被松开后,以加速度a沿导轨匀加速下滑,金属棒中的电流始终保持恒定,重力加速度为g.求下滑到底端的过程中,金属棒(1)末速度的大小v;(2)通过的电流大小I;(3)通过的电荷量Q.8.(2018年江苏卷)如图

所示,真空中四个相同的矩形匀强磁场区域,高为4d,宽为d,中间两个磁场区域15间隔为2d,中轴线与磁场区域两侧相交于O、O′点,各区域磁感应强度大小相等.某粒子质量为m、电荷量为+q,从O沿轴线射入磁场.当入射速度为v0时

,粒子从O上方处射出磁场.取sin53°=0.8,cos53°=0.6.(1)求磁感应强度大小B;(2)入射速度为5v0时,求粒子从O运动到O′的时间t;(3)入射速度仍为5v0,通过沿轴线OO′平移中间两个磁场(磁场不重叠),可使粒子从O运动到O′的时间增加Δt,求Δt的最大值.【2017年

】1.【2017·新课标Ⅲ卷】(12分)如图,空间存在方向垂直于纸面(xOy平面)向里的磁场。在x≥0区域,磁感应强度的大小为B0;x<0区域,磁感应强度的大小为λB0(常数λ>1)。一质量为m、电荷量为q(q>0)的带电粒子以速度v0从坐标原点O沿x轴正向射入磁场,此时开始计时,当粒子的

速度方向再次沿x轴正向时,求(不计重力)(1)粒子运动的时间;(2)粒子与O点间的距离。2.【2017·新课标Ⅱ卷】(20分)如图,两水平面(虚线)之间的距离为H,其间的区域存在方向水平向右的匀强电场

。自该区域上方的A点将质量为m、电荷量分别为q和–q(q>0)的带电小球M、N先后以相同的初速度沿平行于电场的方向射出。小球在重力作用下进入电场区域,并从该区域的下边界离开。已知N离开电场时的速度方向竖直向下;M在电场中做直线运动,刚离开电场时的动能为N刚离开电场时动能的1.5倍

。不计空气阻力,重力加速度大小为g。求16(1)M与N在电场中沿水平方向的位移之比;(2)A点距电场上边界的高度;(3)该电场的电场强度大小。3.【2017·江苏卷】(16分)一台质谱仪的工作原理如图所示.大量的

甲、乙两种离子飘入电压为U0的加速电场,其初速度几乎为0,经过加速后,通过宽为L的狭缝MN沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场中,最后打到照相底片上.已知甲、乙两种离子的电荷量均为+q,质量分别为2m和m,图中虚

线为经过狭缝左、右边界M、N的甲种离子的运动轨迹.不考虑离子间的相互作用.(1)求甲种离子打在底片上的位置到N点的最小距离x;(2)在答题卡的图中用斜线标出磁场中甲种离子经过的区域,并求该区域最窄处的宽度d;(3)若考虑加速电压有波动,在(0–UU)到(0UU+)之间变化,要使

甲、乙两种离子在底片上没有重叠,求狭缝宽度L满足的条件.4.【2017·天津卷】(18分)平面直角坐标系xOy中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅲ现象存在沿y轴负方向的匀强电场,如图所示。一带负电的粒子从电场中的Q点以速度v0沿x轴正方向开始运动,Q点到y轴的距离为到x轴距离

的2倍。粒子从坐标原点O离开电场进入磁场,最终从x轴上的P点射出磁场,P点到y轴距离与Q点到y轴距离相等。不计粒子重力,问:(1)粒子到达O点时速度的大小和方向;(2)电场强度和磁感应强度的大小之比。175.

【2017·天津卷】(20分)电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器。电磁轨道炮示意如图,图中直流电源电动势为E,电容器的电容为C。两根固定于水平面内的光滑平行金属导轨间距为l,电阻不

计。炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在两导轨间处于静止状态,并与导轨良好接触。首先开关S接1,使电容器完全充电。然后将S接至2,导轨间存在垂直于导轨平面、磁感应强度大小为B的匀强磁场(图中未画出),MN开始向右加速运动。当M

N上的感应电动势与电容器两极板间的电压相等时,回路中电流为零,MN达到最大速度,之后离开导轨。问:(1)磁场的方向;(2)MN刚开始运动时加速度a的大小;(3)MN离开导轨后电容器上剩余的电荷量Q是多少。【2016年】1.【2016·全国卷Ⅰ】如图1-,两固定的绝缘斜面倾角均为θ

,上沿相连.两细金属棒ab(仅标出a端)和cd(仅标出c端)长度均为L,质量分别为2m和m;用两根不可伸长的柔软轻导线将它们连成闭合回路abdca,并通过固定在斜面上沿的两光滑绝缘小定滑轮跨放在斜面上,使两金属棒水平.右斜面上存在匀强磁场,磁感应强度大小为B,方向垂直于斜面向上,已

知两根导线刚好不在磁场中,回路电阻为R,两金属棒与斜面间的动摩擦因数均为μ,重力加速度大小为g,已知金属棒ab匀速下滑.求:()(1)作用在金属棒ab上的安培力的大小;(2)金属棒运动速度的大小.图1-2.【2016·全国卷Ⅱ】如图1-所示,水平面(纸面)内间距为l的平行金属导轨

间接一电阻,质量为m、长度为l的金属杆置于导轨上.t=0时,金属杆在水平向右、大小为F的恒定拉力作用下由静止开始运动.t0时刻,金属杆进入磁感应强度大小为B、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速18运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者

之间的动摩擦因数为μ.重力加速度大小为g.求:(1)金属杆在磁场中运动时产生的电动势的大小;(2)电阻的阻值.图1-3.【2016·四川卷】如图1-所示,电阻不计、间距为l的光滑平行金属导轨水平放置于磁感应强度为B、方向竖直向下的匀强磁场中,导轨左端接一定值电阻R.

质量为m、电阻为r的金属棒MN置于导轨上,受到垂直于金属棒的水平外力F的作用由静止开始运动,外力F与金属棒速度v的关系是F=F0+kv(F0、k是常量),金属棒与导轨始终垂直且接触良好.金属棒中感应电流为i,

受到的安培力大小为FA,电阻R两端的电压为UR,感应电流的功率为P,它们随时间t变化图像可能正确的有()图1-图1-4.【2016·浙江卷】小明设计的电磁健身器的简化装置如图1-10所示,两根平行金属导轨相距l=0.50m,倾

角θ=53°,导轨上端串接一个R=0.05Ω的电阻.在导轨间长d=0.56m的区域内,存在方向垂直导轨平面向下的匀强磁场,磁感应强度B=2.0T.质量m=4.0kg的金属棒CD水平置于导轨上,用绝缘绳索通过定滑轮与

拉杆GH相连.CD棒的初始位置与磁场区域的下边界相距s=0.24m.一位健身者用恒力F=80N拉动GH杆,CD棒由静止开始运动,上升过程中CD棒始终保持与导轨垂直.当CD棒到达磁场上边界时健身者松手,触发恢复装置使CD棒回到初始位置(重力加速度g取10m/s2

,sin53°=0.8,不计其他电阻、摩擦力以及拉杆和绳索的质量).求:(1)CD棒进入磁场时速度v的大小;19(2)CD棒进入磁场时所受的安培力FA的大小;(3)在拉升CD棒的过程中,健身者所做的功W和电阻产生的焦耳热Q.图1-105.【2016·全国卷Ⅲ】如图1-所示,两条相距

l的光滑平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度大小B1随时间t的变化关系为B1=kt,式中k为常量;在金

属棒右侧还有一匀强磁场区域,区域左边界MN(虚线)与导轨垂直,磁场的磁感应强度大小为B0,方向也垂直于纸面向里.某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t0时刻恰好以速度v0越过MN,此后向右做匀速运动.金属棒与导轨始终相互垂直并接触良

好,它们的电阻均忽略不计.求:(1)在t=0到t=t0时间间隔内,流过电阻的电荷量的绝对值;(2)在时刻t(t>t0)穿过回路的总磁通量和金属棒所受外加水平恒力的大小.图1-6.【2016·北京卷】如图1-所示,质量为m、电荷量为q的带电粒子,以初速度v沿垂

直磁场方向射入磁感应强度为B的匀强磁场,在磁场中做匀速圆周运动.不计带电粒子所受重力.(1)求粒子做匀速圆周运动的半径R和周期T;(2)为使该粒子做匀速直线运动,还需要同时存在一个与磁场方向垂直的匀强电场,求电场强度E的大小.2

0图1-7.【2016·江苏卷】回旋加速器的工作原理如图1-甲所示,置于真空中的D形金属盒半径为R,两盒间狭缝的间距为d,磁感应强度为B的匀强磁场与盒面垂直,被加速粒子的质量为m,电荷量为+q,加在狭缝间的交变电压如图乙所示,电压值的大小为U0.周期T=2πmqB.一束该种粒子在t=0~T2时间

内从A处均匀地飘入狭缝,其初速度视为零.现考虑粒子在狭缝中的运动时间,假设能够出射的粒子每次经过狭缝均做加速运动,不考虑粒子间的相互作用.求:(1)出射粒子的动能Em;(2)粒子从飘入狭缝至动能达到Em所需的总时间

t0;(3)要使飘入狭缝的粒子中有超过99%能射出,d应满足的条件.图1-8.【2016·四川卷】如图1-所示,图面内有竖直线DD′,过DD′且垂直于图面的平面将空间分成Ⅰ、Ⅱ两区域.区域Ⅰ有方向竖直向上的匀强电场和方向垂直于图面的匀强磁场

B(图中未画出);区域Ⅱ有固定在水平面上高h=2l、倾角α=π4的光滑绝缘斜面,斜面顶端与直线DD′距离s=4l,区域Ⅱ可加竖直方向的大小不同的匀强电场(图中未画出);C点在DD′上,距地面高H=3l.零时刻,质量为m、带电荷量为q的

小球P在K点具有大小v0=gl、方向与水平面夹角θ=π3的速度,在区域Ⅰ内做半径r=3lπ的匀速圆周运动,经C点水平进入区域Ⅱ.某时刻,不带电的绝缘小球A由斜面顶端静止释放,在某处与刚运动到斜面的小球P相遇.小球视为质点

,不计空气阻力及小球P所带电荷量对空间电磁场的影响.l已知,g为重力加速度.(1)求匀强磁场的磁感应强度B的大小;(2)若小球A、P在斜面底端相遇,求释放小球A的时刻tA;(3)若小球A、P在时刻t=βlg(β为常数)相遇于斜

面某处,求此情况下区域Ⅱ的匀强电场的场强E,21并讨论场强E的极大值和极小值及相应的方向.图1-9.【2016·浙江卷】为了进一步提高回旋加速器的能量,科学家建造了“扇形聚焦回旋加速器”.在扇形聚焦过程中,离子能以不变的速

率在闭合平衡轨道上周期性旋转.扇形聚焦磁场分布的简化图如图1-11所示,圆心为O的圆形区域等分成六个扇形区域,其中三个为峰区,三个为谷区,峰区和谷区相间分布.峰区内存在方向垂直纸面向里的匀强磁场,磁感应强度为B,谷区内没有磁场.质量为m,电荷量为q的正离子,以不

变的速率v旋转,其闭合平衡轨道如图中虚线所示.(1)求闭合平衡轨道在峰区内圆弧的半径r,并判断离子旋转的方向是顺时针还是逆时针;(2)求轨道在一个峰区内圆弧的圆心角θ,及离子绕闭合平衡轨道旋转的周期T;(3)在谷区也施加垂直纸面向里的

匀强磁场,磁感应强度为B′,新的闭合平衡轨道在一个峰区内的圆心角θ变为90°,求B′和B的关系.已知:sin(α±β)=sinαcosβ±cosαsinβ,cosα=1-2sin2α2.图1-11

管理员店铺
管理员店铺
管理员店铺
  • 文档 467379
  • 被下载 24
  • 被收藏 0
相关资源
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?