【文档说明】《湖南中考真题数学》2008年湖南省娄底市中考数学试卷(教师版).pdf,共(20)页,566.849 KB,由envi的店铺上传
转载请保留链接:https://www.doc5u.com/view-966f016164a94f50281a5fda61b137ad.html
以下为本文档部分文字说明:
2008年湖南省娄底市中考数学试卷(教师版)一、选择题(共8小题,每小题3分,满分24分)1.(3分)下列计算正确的是()A.a3•a2=a6B.(a2b3)3=a6bC.(﹣x)5•(﹣x)3=x8D.(4a)3=12a3【考点】46
:同底数幂的乘法;47:幂的乘方与积的乘方.菁优网版权所有【分析】分别根据同底数幂的乘法与幂的乘方,积的乘方法则进行计算.【解答】解:A、应为a3•a2=a3+2=a5,故本选项错误;B、应为(a2b3)3=a2×3
b3×3=a6b9,故本选项错误;C、(﹣x)5•(﹣x)3=(﹣x)8=x8,正确;D、应为(4a)3=43•a3=64a3,故本选项错误.故选:C.【点评】本题考查了同底数幂相乘法则,同底数幂相乘,底数不变指数相加;积的乘方:把积中的每一个因式分别乘方,再把所得的
幂相乘.2.(3分)不等式组的解集标示在数轴上正确的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.菁优网版权所有【分析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上,即
可.【解答】解:解不等式组得,再分别表示在数轴上为:故选:D.【点评】不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与
不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.(3分)如图,Rt△ABC中,∠C=90°,斜边AB的垂直平分线交AB于点D,交BC于点E,AE平分∠BAC,那么下
列关系式中不成立的是()A.∠B=∠CAEB.∠DEA=∠CEAC.∠B=∠BAED.AC=2EC【考点】KG:线段垂直平分线的性质.菁优网版权所有【分析】根据线段垂直平分线的性质,AE=BE,则∠B=∠CAE,再由AE平分∠BAC,得∠BAE=∠CAE.从
而得出答案.【解答】解:A、∵ED⊥AB,且BD=AD∴∠B=∠DAE又∵AE平分∠BAC,∴∠CAE=∠DAE故∠B=∠CAE.正确;B、在△ADE与△ACE中,∠CAE=∠DAE,∠C=∠ADE=90°
,根据三角形内角和定理∠DEA=∠CEA.正确;C、∵ED⊥AB,且BD=AD,∴∠B=∠BAE,正确;D、不一定成立.故选:D.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两
个端点的距离相等.4.(3分)某青年排球队12名队员的年龄情况如下年龄(岁)1819202122人数14322则球队队员年龄的中位数与众数分别为()A.19,19B.20,19C.25,19D.19,20【考点】W4:中位数;W5:众数
.菁优网版权所有【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:表中数据为从小到大排列,数据19出现了三次最多为众数;20和20处在第5位和第6位,其平均数20为
中位数.所以本题这组数据的中位数是20,众数是19.故选:B.【点评】一组数据中出现次数最多的数据叫做众数.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.5.(3分)如图,王华在地面上放置一个平面镜E来测量铁塔AB的高度,镜子与铁塔的距离EB=20米
,镜子与王华的距离ED=2米时,王华刚好从镜子中看到铁塔顶端点A,已知王华的眼睛距地面的高度CD=1.5米,则铁塔AB的高度是()A.15米B.米C.16米D.16.5米【考点】SA:相似三角形的应用.菁优网版权所有【分析】利用镜面对称,注意寻找相似三角形,根据比例求出AB.【解答】解:
由镜面对称可知:△CDE∽△ABE,∴,∴,∴AB=15米.故选:A.【点评】运用镜面对称性质,得到三角形相似,再由相似比三角形对应边成比例得出最后结果,比较简单.6.(3分)下列命题中,真命题是()A.两条对角线相等的四边形是矩
形B.两条对角线互相垂直的四边形是菱形C.两条对角线相等的平行四边形是正方形D.两条对角线互相平分的四边形是平行四边形【考点】L6:平行四边形的判定;L9:菱形的判定;LC:矩形的判定;LF:正方形的判定.菁优网版权所有【
分析】A、根据矩形的判定定理解答;B、根据菱形的判定与性质解答;C、根据正方形的判定与性质解答;D、根据平行四边形的性质与判定解答.【解答】解:A、等腰梯形也满足此条件,但不是矩形;故本选项错误;B、两条对角
线互相垂直平分的四边形才是菱形;故本选项错误;C、对角线相等的平行四边形是矩形,对角线互相垂直的平行四边形是菱形,既是矩形又是菱形的四边形是正方形,所以两条对角线垂直且相等的平行四边形是正方形;故本选项
错误;D、两条对角线互相平分的四边形是平行四边形;故本选项正确.故选:D.【点评】本题综合考查了各种图形的性质以及有关判定,熟记性质和判定,准确掌握知识是解题的关键.7.(3分)将正方形纸片两次对折,并剪出一个菱形小洞后平铺,得到的图形是()A.B.C.D.【
考点】P9:剪纸问题.菁优网版权所有【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向右下对折,向左下对折,从直角三角形的顶点处剪去一个菱形,展开后实际是从正方形的对角线的交点处剪去4个较小的角相对的菱形,得到结论.故选
C.【点评】本题主要考查学生的动手能力及空间想象能力.8.(3分)如图,矩形ABCD中,AB=3,AD=4,动点P沿A⇒B⇒C⇒D的路线由A点运动到D点,则△APD的面积S是动点P运动的路径x的函数,这个函数的大致图象可能是()A.B.C.D.【考点】E7:动点问题的函数
图象.菁优网版权所有【分析】本题考查动点问题的函数图象问题.【解答】解:△APD的面积S随动点P的运动的路径x的变化由小到大再变小,且点P在BC上时一直保持最大值.又因为AB=CD,所以,该图象应该是个等腰梯形.故选:A.【点评】注意分析y随x的变化而变化的趋势,而不一定要通过求解析
式来解决.二、填空题(共8小题,每小题3分,满分24分)9.(3分)﹣2008的相反数是2008.【考点】14:相反数.菁优网版权所有【分析】求一个数的相反数就是求只有符号不同的数,根据定义可以直接求解.【解答】解:根据相反数的定义:﹣2008的相反数是2008
.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.10.(3分)已知等腰三角形的两边长分别为4c
m和8cm,则此三角形的周长为20cm.【考点】K6:三角形三边关系;KH:等腰三角形的性质.菁优网版权所有【分析】根据等腰三角形的性质,本题要分情况讨论.当腰长为4cm或是腰长为8cm两种情况.【解答】
解:等腰三角形的两边长分别为4cm和8cm,当腰长是4cm时,则三角形的三边是4cm,4cm,8cm,4cm+4cm=8cm不满足三角形的三边关系;当腰长是8cm时,三角形的三边是8cm,8cm,4cm,三角形
的周长是20cm.故填20.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也
是解题的关键.11.(3分)2008年5月12日14时28分,我国汶川发生了8.0级特大地震.地震发生后,社会各界涌跃捐款捐物,支援灾区.截止到6月4日,国内外捐赠款物累计达436.81亿元人民币.436.81亿
元用科学记数法(保留三个有效数字)表示为4.37×1010元.【考点】1L:科学记数法与有效数字.菁优网版权所有【分析】科学记数法就是将一个数字表示成a×10n的形式,其中1≤|a|<10,n表示整数.题中436.81亿=43681000000,有11位整数
,n=11﹣1=10.一个近似数的有效数字是从左边第一个不是0的数字起,到精确到的数位止都是这个数的有效数字.保留三个有效数字,要观察第4个有效数字,四舍五入.【解答】解:436.81亿=43681000000≈4.37×1010元.【点评】此题考查科学记数法的表示方法,以
及用科学记数法表示的数的有效数字的确定方法.科学记数法要求前面的部分是大于或等于1,而小于10,小数点向左移动10位,应该为4.37×1010.12.(3分)已知反比例函数y=的图象如下,则k的值可为大于一2的实数都可以,如一1,0,等等.(写出满足条件的一个
k的值即可)【考点】G2:反比例函数的图象.菁优网版权所有【分析】根据反比例函数的图象经过的象限即可确定k的值.【解答】解:根据题意可得:反比例函数y=的图象在一、三象限,有k+2>0,解得k>﹣2.故k的值可为大于一2的实数都可以,答案不唯一.【点评】本题考查反比例函数图象特点:反比例函
数y=的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.13.(3分)一只蚂蚁爬行在如图的方格纸上,当它停在某一方格中时,你认为蚂蚁停留在白格中的概率是.【考点】X5:几何概率.菁优网版权所有【分析】首先确定白方格的面积在整个方
格纸上中占的比例,根据这个比例即可求出蚂蚁停留在白格中的概率.【解答】解:由题意可知方格纸被均匀的分成16份,白方格占8份,白方格的面积在整个方格纸上中占的比例为,故蚂蚁停留在白格中的概率是.【点评】
用到的知识点为:概率=相应的面积与总面积之比.14.(3分)一个形如圆锥的冰淇淋纸筒(无底盖),其底面直径为8cm,母线长为6cm,围成这样的冰淇淋纸筒所需纸片的面积是24πcm2.【考点】MP:圆锥的计算.菁优网
版权所有【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面直径为8cm,底面周长=8π,所需纸片的面积=×8π×6=24πcm2.【点评】本题利用了圆的周长公式和扇形面积公式求解.15.(3分)如图,在⊙O中,弦A的长为8cm,半径OC⊥AB,垂足为D,CD=
2cm,则⊙O的半径5cm.【考点】KQ:勾股定理;M2:垂径定理.菁优网版权所有【分析】根据垂径定理知道BD=4,而CD=2,可以连接OB构造直角三角形,然后利用勾股定理可以得到关于半径的一个方程.【解答】解:连接OB,
∵OC⊥AB,∴D为AB的中点,BD=AB=4,设OB=R,则OD=R﹣CD=R﹣2,在直角三角形ODB中OB2=DB2+OD2,∴R2=42+(R﹣2)2,解得R=5cm.【点评】解题关键在于利用垂径定理和勾股定理构造关于半径的方程.16.(3分)小亮同学用棋子摆成
如下三个“工”字形图案,依照这种规律,第n个“工”字形图案需4n+3或2(2n+1)+1枚棋子.【考点】38:规律型:图形的变化类.菁优网版权所有【分析】此题主要是注意发现第n个图中,上下各有(2n+1)个
.【解答】解:观察图形发现:第一个图中,是2×3+1=7个,第二个图中是2×5+1=11个,以此类推,则第n个图中,是2×(2n+1)+1=4n+3.故答案为:4n+3或2(2n+1)+1.【点评】关键是通过归纳与总结,得到其中的规
律.三、解答题(共9小题,满分72分)17.(7分)计算:2sin45°﹣|﹣|﹣(1﹣)0+()﹣1.【考点】15:绝对值;28:实数的性质;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.菁优网版权所有【
分析】根据实数的运算顺序计算,注意:sin45°=;负数的绝对值是它的相反数;任何不等于0的数的0次幂都等于1;()﹣1==3.【解答】解:原式=.【点评】传统的小杂烩计算题,特殊角的三角函数值也是常考的.涉及知识:负指数为正指数的倒数;任何非0数的0次
幂等于1;绝对值的化简;二次根式的化简.18.(7分)先化简再求值:,其中a满足a2﹣a=0.【考点】6D:分式的化简求值.菁优网版权所有【分析】本题的关键是正确进行分式的通分、约分,并准确代值计算.【解答】解:原式=(
2分)=(a﹣2)(a+1)=a2﹣a﹣2,(4分)∵a2﹣a=0,∴原式=﹣2.【点评】本题考查分式的化简与运算,试题中的a不必求出,只需整体代入求解即可.19.(7分)小明受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问
题:(1)放入一个小球量筒中水面升高2cm;(2)求放入小球后量筒中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围);(3)量筒中至少放入几个小球时有水溢出?【考点】FH:一次函数的应用.菁优网版权所有【分析】本题中关
键是如何把图象信息转化为点的坐标,无球时水面高30cm,就是点(0,30);3个球时水面高为36,就是点(3,36),从而求出y与x的函数关系式.【解答】解:(1)2;(2)设y=kx+b,把(0,30),(3,36)代入得:解得即y=2x+30;(3)由2
x+30>49,得x>9.5,即至少放入10个小球时有水溢出.【点评】此题朴实而有新意,以乌鸦喝水的小故事为背景,以一次函数为模型,综合考查同学们识图能力、处理信息能力、待定系数法以及函数所反映的对应与变化思想的应用.20.(7分)如图,小山的顶部是一块平地DE,在这块平地上有一高压输电的铁架AE
,小山的斜坡BD的坡度i=1:,斜坡BD的长是50米,在山块的坡底B处测得铁架顶端A的仰角为45°,在山坡坡顶D处测得铁架顶端A的仰角为60°,求铁架AE的高度.(答案可带根号)【考点】TA:解直角三角形的应用﹣仰角俯角问题.菁优网版权所有【分析】首先分析图形
:根据题意构造直角三角形;本题涉及多个直角三角形,应利用其公共边构造三角关系,进而可求出答案.【解答】解:作DF⊥BC于F,在Rt△BDF中,iBD=1:;则∠DBC=30°,∴BD=2DF.设BD=2DF=2k=50,解得k=25;故DF=25,BF=25,在Rt△ADE中,∠ADE
=60°,则tan∠ADE=,得DE=AE;在Rt△ABC中,∠ABC=45°,tan∠ABC=1,得AC=BC,又因为四边形DFCE是矩形,所以DE=FC,DF=EC,AE+25=25+AE,解得AE=25(米).答:铁架AE的高
度为25(米).【点评】本题要求学生借助俯角关系构造直角三角形,并结合图形利用三角函数解直角三角形.21.(8分)如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形.在建
立平面直角坐标系后,点B的坐标为(﹣1,﹣1).(1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1的图形并写出点B1的坐标;(2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,画出△A2B2C的图形并写出点B2的坐标;(3)把△ABC以点A为位似中心放大,
使放大前后对应边长的比为1:2,画出△AB3C3的图形.【考点】Q4:作图﹣平移变换;R8:作图﹣旋转变换;SD:作图﹣位似变换.菁优网版权所有【分析】(1)△ABC的各点向左平移8格后得到新点,顺次连接得△A1B1C1;(2
)△ABC的另两点绕点C按顺时针方向旋转90°后得到新的两点,顺次连接得△A2B2C;(3)利用位似放大的性质作图.【解答】解:(1)画出的△A1B1C1如图所示,点B1的坐标为(﹣9,﹣1);(3分)(2)画出的△A2B2C的图形如图所示,点B
2的坐标为(5,5);(3分)(3)画出的△AB3C3的图形如图所示.(2分)(注:其余位似图形画正确者相应给分.)【点评】本题的难点是第三问,即把△ABC以点A为位似中心放大,就是在AB、AC的延长
线上取点B3、C3,使B3C3=2BC,也就是说,BC是△AB3C3的中位线.22.(8分)如图,在平行四边形ABCD中,点E是边AD的中点,BE的延长线与CD的延长线相交于点F.(1)求证:△ABE≌△DFE;(2)试连接BD、AF,判断四边形ABDF的形状,并证明你的结论.【考点】L7:平行
四边形的判定与性质.菁优网版权所有【分析】(1)可用AAS证明△ABE≌△DFE;(2)四边形ABDF是平行四边形,可用对角线互相平分的四边形是平行四边形证明.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CF.∴∠1=∠2,∠3=∠4∵E是AD的中点,∴AE
=DE.∴△ABE≌△DFE.(2)解:四边形ABDF是平行四边形.∵△ABE≌△DFE,∴AB=DF又∵AB∥DF∴四边形ABDF是平行四边形.【点评】此题主要考查平行四边形的判定和全等三角形的判定.熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四
边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.23.(8分)某农机公司为更好地服务于麦收工作,按图1给出的比例,从甲、乙、丙三个工厂共购买了150台同种农机,公司技术人员对购买的这批农机全部进行了检验,绘制了如图2所示的统计图.请你根据图中提供的
信息,解答以下问题:(1)求该农机公司从丙厂购买农机的台数;(2)求该农机公司购买的150台农机中优等品的台数;(3)如果购买的这批产品质量能代表各厂的产品质量状况,那么:①从优等品的角度考虑,哪个工厂的产品质量较好些?为什么?②甲厂2005年生产的360台产品中的优等品有多少台?【考点】V
B:扇形统计图;VC:条形统计图.菁优网版权所有【分析】(1)根据图1,可知丙所占的比例是1﹣40%﹣40%),则该农机公司从丙厂购买农机的台数为150×(1﹣40%﹣40%)台;(2)该农机公司购买的150台农机中优等品的
台数为50+51+26台;(3)①分别求出甲、乙、丙厂的优等率,进行比较即可;②利用甲厂的优等率即可求出2005年生产的360台产品中的优等品数量.【解答】解:(1)农机公司从丙厂购买农机:150×(1﹣40%﹣40%)=30(台)(2分)(2)优等品的台数为:50+51+26
=127(台)(4分)(3)①∵,∴丙厂的产品质量较好些.(7分)②甲厂2005年生产的360台产品中的优等品数为:360×=300(台)(9分)【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个
项目的数据;扇形统计图则能直接反映部分占总体的百分比大小.24.(8分)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程;如果你选用其它的解题方案,此时,不必填写表格,只需按照解答题的一般要求,进行解答即可.甲、乙两人
同时从张庄出发,步行15千米到李庄,甲比乙每小时多走1千米,结果比乙早到半小时,问两人每小时各走几千米?速度(千米/时)所用时间(时)所走的路程(千米)甲15乙x15(1)设乙每小时走x千米,根据题意,利用速度、时间、路程之间的关系填写表格;(要求:填上适当的代数式.)(2)列出方程(组)
,并求出问题的解.【考点】A8:解一元二次方程﹣因式分解法;B7:分式方程的应用.菁优网版权所有【分析】(1)时间=路程÷速度;速度=路程÷时间.(2)等量关系为:乙走完全程用的时间﹣甲走完全程的时间=0.5.【解答】解:(1)速度(千米/时)所用时间(时
)所走的路程(千米)甲x+115x+115乙x15x15(2)由题意得:.整理得:x2+x﹣30=0.解得:x1=5,x2=﹣6(不符合题意舍去).经检验:x=5是原分式方程的解.∴x+1=6,答:甲每小时走6
千米,乙每小时走5千米.【点评】找到合适的等量关系是解决问题的关键.分式方程解决应用题的检验有两个方面,一方面要保证方程有解,另一方面要保证实际问题有意义,二者缺一不可,要注意做好两方面的检验.25.(12分)如图,已知
直线y=x+8交x轴于A点,交y轴于B点,过A、0两点的抛物线y=ax2+bx(a<O)的顶点C在直线AB上,以C为圆心,CA的长为半径作⊙C.(1)求抛物线的对称轴、顶点坐标及解析式;(2)将⊙C沿x轴翻折后,得到⊙C′,求证:直线AC是⊙C′的切线;(3)若
M点是⊙C的优弧(不与0、A重合)上的一个动点,P是抛物线上的点,且∠POA=∠AM0,求满足条件的P点的坐标.【考点】HF:二次函数综合题.菁优网版权所有【分析】(1)根据抛物线过A(﹣8,0),B(0,0)两点可求出其对称轴方程,得C点的横坐标,再根据C点在直线y=x+8上,可求出C点的坐
标,即抛物线的顶点坐标.用待定系数法即可求出抛物线的解析式;(2)连接CC′、C′A,C、C′关于x轴对称,根据对称的性质可知x轴是线段CC′的垂直平分线,故△ACC'是等腰三角形,因为点C(﹣4,4),所以∠CAO=45°,根据等腰三角形的性质可知∠CAC′=2∠CAO=90°,AC过⊙C
′的半径C′A的外端点A,根据切线的定义可知直线AC是⊙C,的切线;(3)根据C点坐标可知∠ABO=45°,由圆周角可得∠AMO=∠ABO=45°,设P(x,y)当||=1,即y=x或y=﹣x时∠PO
A=45°,故应分y=x,y=﹣x时两种情况分别代入原函数解析式求出P点坐标.【解答】解:(1)如图,由直线y=x+8图象上点的坐标特征可知,A(﹣8,0),B(0,8)∵抛物线过A、O两点∴抛物线的对称点为x=﹣4又∵抛物线的对称点在直线AB上,∴当x
=﹣4时,y=4∴抛物线的顶点C(﹣4,4),解得∴抛物线的解析式为y=﹣x2﹣2x;(2)连接CC′、C′A∵C、C′关于x轴对称,设CC′交x轴于D,则CD⊥x轴,且CD=4,AD=4△ACD为等腰直角三角形∴△AC′D也为等腰直角三角形∴∠CAC′=90°∵AC过⊙C′的半
径C′A的外端点A∴AC是⊙C′的切线;(3)∵M点是⊙O的优弧上的一点,∴∠AMO=∠ABO=45°,∴∠POA=∠AMO=45°当P点在x轴上方的抛物线上时,设P(x,y),则y=﹣x,又∵y=﹣x2﹣2x∴解得此时P点坐标为(﹣4,4)当P点在x轴下方的抛物线时
,设P(x,y)则y=x,又∵y=﹣﹣2x∴解得此时P点的坐标为(﹣12,﹣12)综上所述,满足条件的P点坐标为(﹣4,4)或(﹣12,﹣12)【点评】本题综合考查了一次函数、二次函数图象上点的坐标特点及圆的
相关知识,比较复杂,但难度适中.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/12/1220:58:17;用户:初中数学;邮箱:sx0123@xyh.com;学号:30177
373获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com