《中考数学特训营》常考压轴07 函数应用问题(解析版)

DOC
  • 阅读 5 次
  • 下载 0 次
  • 页数 15 页
  • 大小 323.180 KB
  • 2025-02-13 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【管理员店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
《中考数学特训营》常考压轴07 函数应用问题(解析版)
可在后台配置第一页与第二页中间广告代码
《中考数学特训营》常考压轴07 函数应用问题(解析版)
可在后台配置第二页与第三页中间广告代码
《中考数学特训营》常考压轴07 函数应用问题(解析版)
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的4 已有5人购买 付费阅读2.40 元
/ 15
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】《中考数学特训营》常考压轴07 函数应用问题(解析版) .doc,共(15)页,323.180 KB,由管理员店铺上传

转载请保留链接:https://www.doc5u.com/view-9457e814c34a8be7ae38105d7ef782ec.html

以下为本文档部分文字说明:

1【十大常考压轴题特训】特训07——函数应用问题题量﹕10题;分值﹕每小题10分,共计100分;推荐时间﹕45分钟问题1.(2019湖北省荆门市)为落实“精准扶贫”精神,市农科院专家指导李大爷利用坡前空地种植优质草莓.根据场调查,在草莓上市销售

的30天中,其销售价格m(元/公斤)与第x天之间满足m=3x+15(1≤x≤15)-x+75(15<x≤30)(x为正整数),销售量n(公斤)与第x天之间的函数关系如图所示:如果李大爷的草莓在上市销售期间每天的维护费用为

80元.(1)求销售量n与第x天之间的函数关系式;(2)求在草莓上市销售的30天中,每天的销售利润y与第x天之间的函数关系式;(日销售利润=日销售额﹣日维护费)(3)求日销售利润y的最大值及相应的x.【分析】本题是通过构建函数模型解答销售利

润的问题.(1)依据题意利用待定系数法易求得销售量n与第x天之间的函数关系式,(2)然后根据销售利润=销售量×(售价-进价),列出每天的销售利润y与第x天之间的函数关系式,(3)再依据函数的增减性求得最大利润.【解析】(1)当1

≤x≤10时,设n=kx+b,由图知可知12=kx+b30=10k+b,解得k=2b=10∴n=2x+10同理得,当10<x≤30时,n=﹣1.4x+44∴销售量n与第x天之间的函数关系式:n=2x+10(1≤x≤10)-1.

4x+44(10<x≤30)2(2)∵y=mn﹣80∴y=(2x+10)(3x+15)(1≤x≤10)(-1.4x+44)(3x+15)-80(10<x<15)(-1.4x+44)(-x+75)-80(15≤x≤30)整理得,y=6x2+60x+70(1≤

x≤10)-4.2x2+111x+580(10<x<15)1.4x2-149x+3220(15≤x≤30)(3)当1≤x≤10时,∵y=6x2+60x+70的对称轴x=-b2a=-602×6=-5∴此时,在对称轴的右侧y随

x的增大而增大∴x=10时,y取最大值,则y10=1270当10<x<15时∵y=﹣4.2x2+111x+580的对称轴是x=-b2a=-111-4.2×2=1118.4≈13.2<13.5∴x在x=13时,y取得最大

值,此时y=1313.2当15≤x≤30时∵y=1.4x2﹣149x+3220的对称轴为x=-b2a=1492.8>30∴此时,在对称轴的左侧y随x的增大而减小∴x=15时,y取最大值,y的最大值是y15=1300综上,草莓

销售第13天时,日销售利润y最大,最大值是1313.2元【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小

值),也就是说二次函数的最值不一定在x=-b2a时取得.问题2.(2019湖北省十堰市)某超市拟于中秋节前50天里销售某品牌月饼,其进价为18元/kg.设第x天的销售价格为y(元/kg),销售量为m(kg).该超市根据以

往的销售经验得出以下的销售规律:①当1≤x≤30时,y=40;当31≤x≤50时,y与x满足一次函数关系,且当x=36时,y=37;x=44时,y=33.②m与x的关系为m=5x+50.(1)当31≤x≤

50时,y与x的关系式为;(2)x为多少时,当天的销售利润W(元)最大?最大利润为多少?(3)若超市希望第31天到第35天的日销售利润W(元)随x的增大而增大,则需要在当天销售价格的基础上3涨a元/kg,求a的最小值.【分析】本题是通过构

建函数模型解答销售利润的问题.(1)依据题意利用待定系数法,易得出当31≤x≤50时,y与x的关系式为:y=-12x+55,(2)根据销售利润=销售量×(售价﹣进价),列出每天的销售利润w(元)与销售价x

(元/箱)之间的函数关系式,再依据函数的增减性求得最大利润.(3)要使第31天到第35天的日销售利润W(元)随x的增大而增大,则对称轴=-b2a≥35,求得a即可【解析】(1)依题意,当x=36时,y=37;x=44时,y=33,当31≤x≤50时,设y

=kx+b,则有37=36k+b33=44k+b,解得k=-12b=55∴y与x的关系式为:y=-12x+55(2)依题意,∵W=(y﹣18)•m∴W=(40-18)(5x+50)(1≤x≤30)-12x+55(5x+50)(3

1≤x≤50)整理得,W=110x+1100(1≤x≤30)-52x2+160x+1850(31≤x≤50)当1≤x≤30时,∵W随x增大而增大∴x=30时,取最大值W=30×110+1100=4400当31≤x≤50时,W=-52x2+160x+1850=-52(x-32)2+4410

∵-52<0∴x=32时,W取得最大值,此时W=4410综上所述,x为32时,当天的销售利润W(元)最大,最大利润为4410元(3)依题意,W=(y+a-18)•m=-52x2+(160+5a)x+1850+50a∵第31天到第35天的日销售利润W(元)随x

的增大而增大4∴对称轴x=-b2a=-160+5a2×-52≥35,得a≥3故a的最小值为3.【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型

,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).问题3.(2019山东省临沂市)汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8(

h)时,达到警戒水位,开始开闸放水.x/h02468101214161820y/m141516171814.41210.3987.2(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)

据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.【分析】根据描点的趋势,猜测函数类型,发现当0<x<8时,y与x可能是一次函数关系:当x>8时,y与x就不是一次函数关系:通过观察数据发现y与x的关系

最符合反比例函数.【解析】(1)在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.(2)观察图象当0<x<8时,y与x可能是一次函数关系:设y=kx+b,把(0,14),(8,18)代入得b=148k+b=18解得:k=12,b=14,

y与x的关系式为:y=12x+14,5经验证(2,15),(4,16),(6,17)都满足y=12x+14因此放水前y与x的关系式为:y=12x+14(0<x<8)观察图象当x>8时,y与x就不是一次函数关系:通过

观察数据发现:8×18=10×10.4=12×12=16×9=18×8=144.因此放水后y与x的关系最符合反比例函数,关系式为:y=144x.(x>8)所以开闸放水前和放水后最符合表中数据的函数解析式为:y=12x+1

4(0<x<8)和y=144x.(x>8)(3)当y=6时,6=144x,解得:x=24,因此预计24h水位达到6m.【点评】根据图象猜测函数类型,尝试求出,再验证确切性;也可根据自变量和函数的变化关系进行猜测,关系式确定后,可以求自变量函数的对应值.问题4.(2019浙江省杭州市)方方驾驶

小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在

当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.【分析】(1)由速度乘以时间等于路程,变形即可得速度等于路程比时间,从而得解;6(2)

①8点至12点48分时间长为245小时,8点至14点时间长为6小时,将它们分别代入v关于t的函数表达式,即可得小汽车行驶的速度范围;②8点至11点30分时间长为72小时,将其代入v关于t的函数表达式,可得速度大于120千米/时,从而得答案.【解析】(

1)∵vt=480,且全程速度限定为不超过120千米/小时,∴v关于t的函数表达式为:v=480t,(0≤t≤4).(2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时将t=6代入v=48

0t得v=80;将t=245代入v=480t得v=100.∴小汽车行驶速度v的范围为:80≤v≤100.②方方不能在当天11点30分前到达B地.理由如下:8点至11点30分时间长为72小时,将t=72代入v=480t得v=9607>120千米/小时,超速了.故方方不能在当天11点30分前到达

B地.【点评】点评本题是反比例函数在行程问题中的应用,根据时间速度和路程的关系可以求解,本题属于中档题.问题5.(2019浙江省湖州市)某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从

小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校又骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x(分),图1中线段OA和折线B﹣C﹣D分别表示甲、乙离开小区的路程y(米)与甲步行时间x(分)的函数关系的图象;图

2表示甲、乙两人之间的距离s(米)与甲步行时间x(分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之

间的距离;(3)在图2中,画出当25≤x≤30时s关于x的函数的大致图象.(温馨提示:请画在答题卷相对应的图上)7【分析】(1)根据函数图象中的数据可以求得甲步行的速度和乙出发时甲离开小区的路程;(2)根据函数图象中的

数据可以求得OA的函数解析式,然后将x=18代入OA的函数解析式,即可求得点E的纵坐标,进而可以求得乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)根据题意可以求得乙到达学校的时间,从而可以函数图象补充完整.【解析】(1)由图可得,甲

步行的速度为:2400÷30=80(米/分),乙出发时甲离开小区的路程是10×80=800(米),答:甲步行的速度是80米/分,乙出发时甲离开小区的路程是800米;(2)设直线OA的解析式为y=kx,30k=2800,得k=80,∴直线OA的解析

式为y=80x,当x=18时,y=80×18=1440,则乙骑自行车的速度为:1440÷(18﹣10)=180(米/分),∵乙骑自行车的时间为:25﹣10=15(分钟),∴乙骑自行车的路程为:180×15=2700(米),当x=25时,甲走过的路程为:80×25=2000(米),∴乙到达还

车点时,甲乙两人之间的距离为:2700﹣2000=700(米),答:乙骑自行车的速度是180米/分,乙到达还车点时甲、乙两人之间的距离是700米;(3)乙步行的速度为:80﹣5=75(米/分),乙到达学校用的时间为:25+(2700﹣2400)÷75=29(分),当25≤x≤30

时s关于x的函数的大致图象如右图所示.8【点评】点评本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.问题6.(2019浙江省嘉兴市)某农作物的生长率p与温度t(℃)有如下关系:如图1,当10≤t

≤25时可近似用函数p=150t﹣15刻画;当25≤t≤37时可近似用函数p=﹣1160(t﹣h)2+0.4刻画.(1)求h的值.(2)按照经验,该作物提前上市的天数m(天)与生长率p满足函数关系:生长率p0.20.250.30.35提前上市的天数m(天)051015①请运用已学

的知识,求m关于p的函数表达式;②请用含t的代数式表示m.(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每

提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w(元)与大棚温度t(℃)之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).【分析】(1)把(25,0.3)代入p=-1160(t﹣h)2

+0.4,解方程即可得到结论;(2)①由表格可知,m是p的一次函数,于是得到m=100p﹣20;9②当10≤t≤25时,p=150t﹣15,求得m=100(150t﹣15)﹣20=2t﹣40;当25≤t≤37时,根据题意即可得

到m=100[﹣1160(t﹣h)2+0.4]﹣20=﹣58(t﹣29)2+20;(3)(Ⅰ)当20≤t≤25时,(Ⅱ)当25≤t≤37时,w=300,根据二次函数的性质即可得到结论.【解析】(1)把(25,0.3)代入p=﹣1160(t﹣h)2+

0.4得,0.3=﹣1160(25﹣h)2+0.4,解得:h=29或h=21,∵h>25,∴h=29;(2)①由表格可知,m是p的一次函数,∴m=100p﹣20;②当10≤t≤25时,p=150t﹣15,∴m=100(150t﹣15)﹣20=2

t﹣40;当25≤t≤37时,p=﹣1160(t﹣h)2+0.4,∴m=100[﹣1160(t﹣h)2+0.4]﹣20=﹣58(t﹣29)2+20;(3)(Ⅰ)当20≤t≤25时,由(20,200),(25,300),得w=20t﹣20

0,∴增加利润为600m+[200×30﹣w(30﹣m)]=40t2﹣600t﹣4000,∴当t=25时,增加的利润的最大值为6000元;(Ⅱ)当25≤t≤37时,w=300,增加的利润为600m+[200×30﹣w(30﹣m)]=900×(

﹣58)×(t﹣29)2+15000=﹣11252(t﹣29)2+15000;∴当t=29时,增加的利润最大值为15000元,综上所述,当t=29时,提前上市20天,增加的利润最大值为15000元.【点评】本题考查二次函数

的实际应用,借助二次函数解决实际问题,此题涉及数据较多,认真审题很关键.二次函数的最值问题要利用性质来解,注意自变量的取值范围.10问题7.(2019浙江省宁波市)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠

塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分

)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.(2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟

?(假设每一班车速度均相同,小聪步行速度不变)【分析】(1)设y=kx+b,运用待定系数法求解即可;(2)把y=1500代入(1)的结论即可;(3)设小聪坐上了第n班车,30﹣25+10(n﹣1)≥4

0,解得n≥4.5,可得小聪坐上了第5班车,再根据“路程、速度与时间的关系”解答即可.【解析】(1)由题意得,可设函数表达式为:y=kx+b(k≠0),把(20,0),(38,2700)代入y=kx+b,得0=20k+b2700=3

8k+b,解得k=150b=-3000,∴第一班车离入口处的路程y(米)与时间x(分)的函数表达为y=150x﹣3000(20≤x≤38);(2)把y=1500代入y=150x﹣3000,解得x=30,30﹣20=10(分),∴第一班车从入口处到达塔林所需时间10分钟;11

(3)设小聪坐上了第n班车,则30﹣25+10(n﹣1)≥40,解得n≥4.5,∴小聪坐上了第5班车,等车的时间为5分钟,坐班车所需时间为:1200÷150=8(分),步行所需时间:1200÷(1500÷25)=20(分),20﹣(8+5)=7(分),∴比他在

塔林游玩结束后立即步行到草甸提早了7分钟.【点评】点评本题主要考查了一次函数的应用,熟练掌握待定系数法求出函数解析式是解答本题的关键.问题8.(2019浙江省绍兴市)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)

根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.【分析】(1

)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米,据此即可求出1千瓦时的电量汽车能行驶的路程;(2)运用待定系数法求出y关于x的函数表达式,再把x=180代入即可求出当汽车已行驶180

千米时,蓄电池的剩余电量.【解析】(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米.1千瓦时的电量汽车能行驶的路程为:15060-35=6千米;(2)设y=kx+b(k≠0),把点(150,35),(200,10)代入,12得

150k+b=35200k+b=10,∴k=-0.5b=110,∴y=﹣0.5x+110,当x=180时,y=﹣0.5×180+110=20,答:当150≤x≤200时,函数表达式为y=﹣0.5x+110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时

.【点评】本题考查了一次函数的应用,解题的关键:(1)熟练运用待定系数法就解析式;(2)找出剩余油量相同时行驶的距离.本题属于基础题,难度不大,解决该类问题应结合图形,理解图形中点的坐标代表的意义.问题9.(2019浙江省绍兴市)有一块形状如图的五边形余料ABCDE,AB

=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材

料面积的最大值;如果不能,说明理由.【分析】(1)①若所截矩形材料的一条边是BC,过点C作CF⊥AE于F,得出S1=AB•BC=6×5=30;②若所截矩形材料的一条边是AE,过点E作EF∥AB交CD于F,FG⊥AB于G,过点C作C

H⊥FG于H,则四边形AEFG为矩形,四边形BCHG为矩形,证出△CHF为等腰三角形,得出AE=FG=6,HG=BC=5,BG=CH=FH,求出BG=CH=FH=FG﹣HG=1,AG=AB﹣BG=5,得出S2=AE•AG=6×5=30;(2)在CD上取点F,过点F作F

M⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,证出△CGF为等腰三角形,得出MG=BC=5,BM=CG,FG=DG,设AM=x,则BM=6﹣x,FM=GM+FG=GM+CG=BC+BM=11﹣x,得出S=AM×

FM=x(11﹣x)=﹣x2+11x,由二13次函数的性质即可得出结果.【解析】(1)①若所截矩形材料的一条边是BC,如图1所示:过点C作CF⊥AE于F,S1=AB•BC=6×5=30;②若所截矩形材料的一条边是A

E,如图2所示:过点E作EF∥AB交CD于F,FG⊥AB于G,过点C作CH⊥FG于H,则四边形AEFG为矩形,四边形BCHG为矩形,∵∠C=135°,∴∠FCH=45°,∴△CHF为等腰直角三角形,∴AE=FG=6,HG=BC=5,BG

=CH=FH,∴BG=CH=FH=FG﹣HG=6﹣5=1,∴AG=AB﹣BG=6﹣1=5,∴S2=AE•AG=6×5=30;(2)能;理由如下:在CD上取点F,过点F作FM⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,∵∠C=13

5°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴MG=BC=5,BM=CG,FG=DG,设AM=x,则BM=6﹣x,∴FM=GM+FG=GM+CG=BC+BM=11﹣x,∴S=AM×FM=x(11﹣x)=﹣x2+11x=﹣(x﹣5.5)2+30.25

,∴当x=5.5时,S的最大值为30.25.14【点评】本题考查了矩形的性质、等腰直角三角形的判定与性质、矩形面积公式以及二次函数的应用等知识;熟练掌握矩形的性质,证明三角形是等腰直角三角形是解题的关键.问题10.(2019内蒙古通辽市)当今,越来越多的青少年在观看影片《流浪地球》后,

更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该

科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠(06)aa„元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a的值.【分析】(1)根据题意列函数关系式即可;(2)设每天扣除捐赠后可获得利润为w元

.根据题意得到w=(x-20-a)(-10x+500)=-10x2+(10a+700)x-500a-10000(30≤x≤38)求得对称轴为x=35+12a,若0<a≤6,则30<35+12a,则当x=35+12a时,w取得最大值,解方程得到a1=2,a2=58,于是得到a

=2.【解析】(1)根据题意得,y=250-10(x-25)=-10x+500(30≤x≤38);(2)设每天扣除捐赠后可获得利润为w元.w=(x-20-a)(-10x+500)=-10x2+(10a+700)x-500a-10000(30≤x≤38)15

对称轴为x=35+12a,且0<a≤6,则30<35+12a≤38,则当x=35+12a时,w取得最大值,∴35+12a-20-a-10x35+12a+500=1960∴a1=2,a2=58(不合题意舍去),∴a=2.【点评】本题考查了二次函数

的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答,正确的理解题意,确定变量,建立函数模型.

管理员店铺
管理员店铺
管理员店铺
  • 文档 474179
  • 被下载 24
  • 被收藏 0
相关资源
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?