【文档说明】2024年新高考数学一轮复习题型归纳与达标检测 第58讲 随机事件的概率与古典概型(讲)(原卷版).docx,共(8)页,158.295 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-93332d841f35302ffa314d8a5f4beef1.html
以下为本文档部分文字说明:
第58讲随机事件的概率与古典概型思维导图知识梳理1.事件的相关概念2.频数、频率和概率(1)频数、频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事
件A出现的比例fn(A)=nAn为事件A出现的频率.(2)概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率.3.事件的关
系与运算名称条件结论符号表示包含关系若A发生,则B一定发生事件B包含事件A(事件A包含于事件B)B⊇A(或A⊆B)相等关系若B⊇A且A⊇B事件A与事件B相等A=B并(和)事件A发生或B发生事件A与事件B的并事件(或和事件)A∪B(或A+B)交(积)事件A发生且B发生事件A与事件B的交
事件A∩B(或AB)(或积事件)互斥事件A∩B为不可能事件事件A与事件B互斥A∩B=∅对立事件A∩B为不可能事件,A∪B为必然事件事件A与事件B互为对立事件A∩B=∅,P(A∪B)=14.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)
必然事件的概率为1.(3)不可能事件的概率为0.(4)概率的加法公式:如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).(5)对立事件的概率:若事件A与事件B互为对立事件,则A∪B为必然事件,P(A∪B)=1,P(A)=1-P(B).5.古典概型(1
)特点:①有限性:在一次试验中所有可能出现的结果只有有限个,即只有有限个不同的基本事件.②等可能性:每个基本事件出现的可能性是均等的.(2)计算公式:P(A)=A包含的基本事件的个数基本事件的总数题型归纳题型1
随机事件的关系【例1-1】把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四人,每个人分得一张,事件“甲分得红牌”与“乙分得红牌”()A.是对立事件B.是不可能事件C.是互斥但不对立事件D.不是互斥事件【例1-2】从1,2,3,…,7这7个数中任取
两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是()A.①B.②④C.③D.①③【跟踪训练1-1】在5张电话卡
中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是()A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡【跟踪训练1-2】对飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两
次都没击中飞机},C={恰有一次击中飞机},D={至少有一次击中飞机},其中彼此互斥的事件是________________________,互为对立事件的是________.【名师指导】判断互斥、对立事件的2种方法定义
法判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件集合法①由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.②事件A的对立事件A所含的结果组成的集合,是全集中由事件A所含的结果组成的集合
的补集题型2随机事件的频率与概率【例2-1】(2019·北京高考)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有
5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:支付金额支付方式不大于2000元大于2000元仅使用A27人3人仅使用B24人1人(1)估计该校学生中上个月A,B两种支付方式都使用的人数;(2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元
的概率;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.【跟踪训练2
-1】(2019·全国卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平
均正点率的估计值为________.【跟踪训练2-2】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最
高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[3
0,35)[35,40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y
(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.【名师指导】1.概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率
的估计值.2.随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.题型3互斥事件、对立事件概率公式的应用【例3-1】某商场有奖销售
中,购满100元商品得1张奖券,多购多得.1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:(1)P(A),P(B),P(C);(2)1张奖券的中奖概
率;(3)1张奖券不中特等奖且不中一等奖的概率.【跟踪训练3-1】某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)x3025y10
结算时间(分钟/人)11.522.53已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率
.(将频率视为概率)【跟踪训练3-2】A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):A班66.577.58B班6789101112C班3
4.567.5910.51213.5(1)试估计C班的学生人数;(2)从A班和C班抽出的学生中,各随机选取1人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率.【名师指导】求互斥事件的概率的方法(1)
直接法(2)间接法(正难则反)题型4古典概型【例4-1】(1)(2019·全国卷Ⅰ)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,右图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.5
16B.1132C.2132D.1116(2)(2019·合肥市第一次质检测)某商场进行购物摸奖活动,规则是:在一个封闭的纸箱中装有标号分别为1,2,3,4,5的五个小球,每次摸奖需要同时取出两个球,每位顾客最多有两次摸奖机会,并规定:若第一次取出的两球号码连号,则中奖,摸奖结束;若第一次
未中奖,则将这两个小球放回后进行第二次摸球,若与第一次取出的两个小球号码相同,则中奖.按照这样的规则摸奖,中奖的概率为()A.45B.1925C.2350D.41100【跟踪训练4-1】(2019·武汉部分
学校调研)我国历法中将一年分春、夏、秋、冬四个季节,每个季节六个节气,如春季包含立春、雨水、惊蛰、春分、清明、谷雨.某书画院甲、乙、丙、丁四位同学接到绘制二十四节气的彩绘任务,现四位同学抽签确定各自完成哪个季节中的6幅彩绘,在制签抽签公平的前提下,甲抽到绘
制夏季6幅彩绘的概率是()A.16B.14C.13D.12【跟踪训练4-2】(2019·兰州市诊断考试)某区要从参加扶贫攻坚任务的5名干部A,B,C,D,E中随机选取2人,赴区属的某贫困村进行驻村扶贫工作,则A或B被选中
的概率是()A.15B.25C.35D.710【跟踪训练4-3】(2019·武汉市调研测试)已知某口袋中装有2个红球,3个白球和1个蓝球,从中任取3个球,则其中恰有两种颜色的概率是()A.35B.45C.7
20D.1320【名师指导】1.古典概型的概率求解步骤(1)求出所有基本事件的个数n.(2)求出事件A包含的所有基本事件的个数m.(3)代入公式P(A)=mn求解.2.基本事件个数的确定方法(1)列举法:此法适合于基本事件个数较少的古典概型.(2)列表法:此法适合于从多个元素中选定两个元素
的试验,也可看成坐标法.(3)树状图法:树状图是进行列举的一种常用方法,适用于有顺序的问题及较复杂问题中基本事件数的探求.(4)运用排列组合知识计算.