高中数学培优讲义练习(人教A版2019必修二)专题10.3 事件的相互独立性(重难点题型精讲)(学生版)

DOC
  • 阅读 1 次
  • 下载 0 次
  • 页数 6 页
  • 大小 187.461 KB
  • 2024-10-06 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
高中数学培优讲义练习(人教A版2019必修二)专题10.3 事件的相互独立性(重难点题型精讲)(学生版)
可在后台配置第一页与第二页中间广告代码
高中数学培优讲义练习(人教A版2019必修二)专题10.3 事件的相互独立性(重难点题型精讲)(学生版)
可在后台配置第二页与第三页中间广告代码
高中数学培优讲义练习(人教A版2019必修二)专题10.3 事件的相互独立性(重难点题型精讲)(学生版)
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的3 已有1人购买 付费阅读2.40 元
/ 6
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】高中数学培优讲义练习(人教A版2019必修二)专题10.3 事件的相互独立性(重难点题型精讲)(学生版).docx,共(6)页,187.461 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-90070129cb3a19ee5992672358470e82.html

以下为本文档部分文字说明:

专题10.3事件的相互独立性(重难点题型精讲)1.事件的相互独立性(1)定义对任意两个事件A与B,如果P(AB)=P(A)P(B)成立,则称事件A与事件B相互独立,简称为独立.(2)性质若事件A与B相互独立,则与B,A与,与也相互独立.(3)应用因为“A与B相互独立”是“P(AB)

=P(A)P(B)”的充要条件,所以如果已知两个事件是相互独立的,则由它们各自发生的概率可以迅速得到它们同时发生的概率.在实际问题中,我们常常依据实际背景去判断事件之间是否存在相互影响,若认为事件之间没有影响,则认为它们相互独立.(4)推广两个事件的相互

独立性可以推广到n(n>2,n∈)个事件的相互独立性,即若事件,,,相互独立,则这n个事件同时发生的概率P()=P()P()P().2.互斥事件与相互独立事件的辨析(1)互斥事件与相互独立事件都描述的是两个事件间的关系,但互斥事件强调不可能同时发生,相互独立事件则强调一个事件的

发生与否对另一个事件发生的概率没有影响.用表格表示如下:相互独立事件互斥事件判断方法一个事件的发生与否对另一个事件发生的概率没有影响.两个事件不可能同时发生,即AB=.概率公式若事件A与B相互独立,则P(AB)=P(A)P(B).若事件A与B

互斥,则P(A∪B)=P(A)+P(B),反之不成立.(2)已知事件A,B发生的概率分别为P(A),P(B),我们有如下结论:事件表示概率(A,B互斥)概率(A,B相互独立)A,B中至少有一个发生P(A∪B)P(A)+P(B)1P()P()或P(A)+P(B)P(AB)A,B都发生P(AB)0P(

A)P(B)A,B都不发生P()1[P(A)+P(B)]P()P()A,B恰有一个发生P(A∪B)P(A)+P(B)P(A)P()+P()P(B)A,B中至多有一个发生P(∪A∪B)11P(A)P(B)【题型1独立性

的判断】【方法点拨】(1)定量法:利用P(AB)=P(A)P(B)是否成立可以准确地判断两个事件是否相互独立.(2)定性法:直观地判断一个事件发生与否对另一个事件的发生的概率是否有影响,若没有影响就是相互独立事件.【例1】(2022·全国·高三专题练习)下列事件中𝐴,𝐵是相互独立事件的是(

)A.一枚硬币掷两次,𝐴=“第一次为正面”,𝐵=“第二次为反面”B.袋中有2白,2黑的小球,不放回地摸两球,𝐴=“第一次摸到白球”,𝐵=“第二次摸到白球”C.掷一枚骰子,𝐴=“出现点数为奇数”,𝐵=“出现点数为偶数”D.𝐴=“人能活到20岁”,𝐵

=“人能活到50岁”【变式1-1】(2023·高一课时练习)袋中有黑、白两种颜色的球,从中进行有放回地摸球,用𝐴1表示第一次摸得黑球,𝐴2表示第二次摸得黑球,则𝐴1与𝐴2是()A.相互独立事件B.不相互独立事件C.互斥

事件D.对立事件【变式1-2】(2022秋·广东梅州·高二阶段练习)抛掷一红一绿两枚质地均匀的骰子,记下股子朝上面的点数.用𝑥表示红色股子的点数,用𝑦表示绿色骰子的点数,用(𝑥,𝑦)表示一次试验的结果

.定义事件:𝐴=“𝑥+𝑦为奇数”,事件𝐵=“𝑥=𝑦”,事件𝐶=“𝑥>4”,则下列结论不正确的是()A.𝑃(𝐴)=3𝑃(𝐵)B.A与𝐵互斥C.𝐵与𝐶独立D.A与𝐵独立【变式1-3】(2023秋·浙江绍兴·高三期末)数字1,2

,3,4,5,6组成没有重复数字的的六位数,A表示事件“1和2相邻”,B表示事件“偶数不相邻”,C表示事件“任何连续两个位置奇偶性都不相同”,D表示事件“奇数按从小到大的顺序排列”.则()A.事件A与事件B相互独立B.事件A与事件C相互独立C.事件A与事件D相互独立D.事件B与事件

C相互独立【题型2相互独立事件的概率】【方法点拨】利用相互独立事件的概率乘法公式,进行求解即可.【例2】(2023秋·山东济宁·高二期末)假设𝑃(𝐴)=0.3,𝑃(𝐵)=0.4,且𝐴与𝐵相互独立,则𝑃(𝐴∪𝐵)=()A.0.12B.0.58C.0.7D

.0.88【变式2-1】(2022·高一课时练习)已知事件A,B相互独立,P(A)=0.4,P(B)=0.3,给出下列四个式子:①P(AB)=0.12;②P(𝐴B)=0.18;③P(A𝐵)=0.28;④P(𝐴𝐵)=0.42.其中正确的有()A.4个B

.2个C.3个D.1个【变式2-2】(2022春·安徽安庆·高一期末)设事件A,B相互独立,𝑃(𝐴)=0.6,𝑃(𝐵)=0.3,则𝑃(𝐴𝐵̅∪𝐴̅𝐵)=()A.0.36B.0.504C.0.54

D.0.9【变式2-3】(2022春·山西太原·高一期末)设𝐴,𝐵,𝐶是一个随机试验中的三个事件,且𝑃(𝐴)>0,𝑃(𝐵)>0,𝑃(𝐶)>0,给出下列结论:①若𝐴与𝐵互斥,则𝑃(𝐴𝐵)≠𝑃(𝐴)𝑃(𝐵);②若𝐴与𝐵独立,则𝑃(�

�∪𝐵)=𝑃(𝐴)+𝑃(𝐵);③若𝐴,𝐵,𝐶两两独立,则𝑃(𝐴𝐵𝐶)=𝑃(𝐴)𝑃(𝐵)𝑃(𝐶);④若𝑃(𝐴𝐵𝐶)=𝑃(𝐴)𝑃(𝐵)𝑃(𝐶),则𝐴,𝐵,𝐶两两独立.则

其中正确结论的个数为()A.0B.1C.2D.3【题型3事件相互独立的应用】【方法点拨】实际问题中,计算相互独立事件同时发生的概率,先用字母表示出事件,再分析题中涉及的事件.对于计算问题:将题中所求事件转化为若干个独立事件

的交事件,利用独立事件的性质和推广求解.【例3】(2022·高一单元测试)甲、乙、丙三人能独立解决某一问题的概率分别是15,14,13,则此三人至少有一个人把此问题解决的概率是()A.160B.320C.1330D.35【变式3-1】(2022·高二单元测试)一个袋子中有4个红球,n个绿球,采

用不放回的方式从中依次随机地取出2个球,若取出第二个球是红球的概率为0.4,那么n的值是()A.3B.4C.6D.8【变式3-2】(2022春·黑龙江绥化·高二期中)某学校餐厅就餐刷卡器是由三个电子元件按如图所示的方式连接而成,元件1或元件2正常工作,且元件3正常工作,则刷卡

器能正常工作.如果各个元件能否正常工作相互独立,元件1、元件2正常工作的概率都是35,元件3正常工作的概率是2527,那么该刷卡器能正常工作的概率为()A.23B.79C.89D.2327【变式3-3】(2022·高一单元测试)高一年级某同学参加了学校“数学社”“物理社”“话剧社”三个社团的

选拔,该同学能否成功进入这三个社团是相互独立的.假设该同学能够进入“数学社”“物理社”“话剧社”三个社团的概率分别为𝑚,𝑛,15,该同学进入两个社团的概率为320,且三个社团都进不了的概率为25,则𝑚+𝑛=()A.712B.112C.815D.920【题型4互斥事件、事件的相互独立性的综

合应用】【方法点拨】阅读题目,分析事件之间的关系,一般将问题划分为若干个彼此互斥的事件,然后运用互斥事件的概率加法公式和相互独立事件的概率乘法公式求解.【例4】(2022秋·陕西榆林·高二阶段练习)甲乙两运

动员进行乒乓球比赛,采用7局4胜制.在一局比赛中,先得11分的运动员为胜方,但打到10:10平后,先多得2分者为胜方.在10:10平后,双方实行轮换发球法,每人每次只发1个球.若在某局比赛中,甲发球时甲得分的概率为35,乙发球时甲得分的概率

为13,各球的结果相互独立,在双方10:10平后,甲先发球,则甲以13:11赢下此局的概率为()A.425B.225C.875D.275【变式4-1】(2022·高一单元测试)甲、乙两人比赛,每局甲获胜的概率为13,各局的胜负之间是独立的,某天两人要进行一场三局两胜的比赛,先赢得两局者为

胜,无平局.若第一局比赛甲获胜,则甲获得最终胜利的概率为()A.13B.59C.23D.19【变式4-2】(2022·全国·高三专题练习)2021年神舟十二号、十三号载人飞船发射任务都取得圆满成功,这意味着我国的科学技术和航天事业取得重大进步.现有航天员甲、

乙、丙三个人,进入太空空间站后需要派出一人走出太空站外完成某项试验任务,工作时间不超过10分钟,如果10分钟内完成任务则试验成功结束任务,10分钟内不能完成任务则撤回再派下一个人,每个人只派出一次.已知甲、乙、丙10分钟内试验成功的概率分别为45,34,23,每个人能否完成任务相互独立

,该项试验任务按照甲、乙、丙顺序派出,则试验任务成功的概率为()A.910B.1920C.2930D.5960【变式4-3】(2022·全国·统考高考真题)某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相

互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为𝑝1,𝑝2,𝑝3,且𝑝3>𝑝2>𝑝1>0.记该棋手连胜两盘的概率为p,则()A.p与该棋手和甲、乙、丙的比赛次序无关B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与

乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?