高考统考数学理科北师大版一轮复习教师用书:第9章 第2节 用样本估计总体 含解析【高考】

DOC
  • 阅读 6 次
  • 下载 0 次
  • 页数 12 页
  • 大小 432.500 KB
  • 2024-11-06 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【管理员店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
高考统考数学理科北师大版一轮复习教师用书:第9章 第2节 用样本估计总体 含解析【高考】
可在后台配置第一页与第二页中间广告代码
高考统考数学理科北师大版一轮复习教师用书:第9章 第2节 用样本估计总体 含解析【高考】
可在后台配置第二页与第三页中间广告代码
高考统考数学理科北师大版一轮复习教师用书:第9章 第2节 用样本估计总体 含解析【高考】
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的4 已有6人购买 付费阅读2.40 元
/ 12
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】高考统考数学理科北师大版一轮复习教师用书:第9章 第2节 用样本估计总体 含解析【高考】.doc,共(12)页,432.500 KB,由管理员店铺上传

转载请保留链接:https://www.doc5u.com/view-8dcb7564975e6a62ec991d00bcb4c1c4.html

以下为本文档部分文字说明:

-1-用样本估计总体[考试要求]1.了解分布的意义与作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.4.会用样本的频率分布估计总体分布,

会用样本的基本数字特征估计总体的基本数字特征.理解用样本估计总体的思想,会用样本估计总体的思想解决一些简单的实际问题.1.常用统计图表(1)频率分布表的画法第一步:求极差,决定组数和组距,组距=极差组数;第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取

闭区间;第三步:登记频数,计算频率,列出频率分布表.(2)频率分布直方图:反映样本频率分布的直方图.横轴表示样本数据,纵轴表示频率组距,每个小矩形的面积表示样本落在该组内的频率.(3)频率分布折线图和总体密度曲线①频率分布折线图:连接

频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.②总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.-2-(4)茎叶图的画法第一步:将每个数据分为茎(高位)和叶(低位)两部

分;第二步:将各个数据的茎按大小次序排成一列;第三步:将各个数据的叶依次写在其茎的右(左)侧.2.样本的数字特征(1)众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数.(2)中位数:把n个数据按

大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.(3)平均数:把x=x1+x2+…+xnn称为x1,x2,…,xn这n个数的平均数.(4)标准差与方差:设一组数据x1,x2,x3,…,xn的平

均数为x,则这组数据的标准差和方差分别是s=1n[(x1-x)2+(x2-x)2+…+(xn-x)2];s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2].[常用结论]1.频率分布直方图中的常见结论(1)众数的估计值为最高矩形的中点对应的横坐标.(2)平均数

的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.(3)中位数的估计值的左边和右边的小矩形的面积和是相等的.2.平均数、方差的公式推广(1)若数据x1,x2,…,xn的平均数为x,那么mx1+a,mx2+a,mx3+a,…,mxn+a的平均数是mx+a.

(2)数据x1,x2,…,xn的方差为s2.①数据x1+a,x2+a,…,xn+a的方差也为s2;②数据ax1,ax2,…,axn的方差为a2s2.一、易错易误辨析(正确的打“√”,错误的打“×”)-3-(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋

势.()(2)一组数据的方差越大,说明这组数据越集中.()(3)频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间的频率越高.()(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.()[答案](1)√(2)×(3)√(4)×二、教材

习题衍生1.一个容量为32的样本,已知某组样本的频率为0.25,则该组样本的频数为()A.4B.8C.12D.16B[设频数为n,则n32=0.25,∴n=32×0.25=8.]2.若某校高一年级8个班参加合唱比赛的得分分别为87,89,90,91,92,

93,94,96,则这组数据的中位数和平均数分别是()A.91.5和91.5B.91.5和92C.91和91.5D.92和92A[∵这组数据为87,89,90,91,92,93,94,96,∴中位数是91+922=91.5,平均数

x=87+89+90+91+92+93+94+968=91.5.]3.甲、乙两位运动员在5场比赛的得分情况如茎叶图所示,记甲、乙两人的平均得分分别为x-甲,x-乙,则下列判断正确的是()A.x-甲>x-乙;甲比乙成绩稳定B.x-甲>x-乙;乙比甲成绩稳定C.x-甲

<x-乙;甲比乙成绩稳定D.x-甲<x-乙;乙比甲成绩稳定-4-D[∵x-甲=16+17+28+30+345=25,x-乙=15+28+28+26+335=26,∴x-甲<x-乙,∴s2甲=15[(16-25)2+(17-25)2+(28-25)2+(30-25)2+(34-25)2

]=52,s2乙=15[(15-26)2+(28-26)2+(26-26)2+(28-26)2+(33-26)2]=35.6,∴s2甲>s2乙,所以乙成绩稳定,故选D.]4.如图是100位居民月均用水量的频率分布直方图,则月均用水量为[2,2.5)范围内的居民有__

______人.25[0.5×0.5×100=25.]考点一样本的数字特征的计算与应用利用样本的数字特征解决决策问题的依据(1)平均数反映了数据取值的平均水平;标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳

定;标准差、方差越小,数据的离散程度越小,越稳定.(2)方差的简化计算公式:s2=1n[(x21+x22+…+x2n)-nx2],或写成s2=1n(x21+x22+…+x2n)-x2,即方差等于原数据平方的平

均数减去平均数的平方.1.(2020·济南模拟)已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为x,方差为s2,则()A.x=4,s2<2B.x=4,s2>2-5-C.x>4,

s2<2D.x>4,s2>2A[∵某7个数的平均数为4,∴这7个数的和为4×7=28,∵加入一个新数据4,∴x=28+48=4.又∵这7个数的方差为2,且加入一个新数据4,∴这8个数的方差s2=7×2+(4-4)28=7

4<2,故选A.]2.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则()甲乙A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方

差D.甲的成绩的极差小于乙的成绩的极差C[根据条形统计图可知甲的中靶情况为4环、5环、6环、7环、8环;乙的中靶情况为5环、5环、5环、6环、9环.x甲=15(4+5+6+7+8)=6,x乙=15(5×3+6+9)=6,甲的成绩的方差为(4-6)2+(5-6

)2+(6-6)2+(7-6)2+(8-6)25=2,乙的成绩的方差为(5-6)2×3+(6-6)2+(9-6)25=2.4;甲的成绩的极差为4环,乙的成绩的极差为4环;甲的成绩的中位数为6环,乙的成绩的中位数为5环,综上可知C正确,故选C.]3.某人5次上班途中所花的时间(单位:分钟

)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x-y|的值为()A.1B.2C.3D.4D[由题意可知-6-15(x+y+10+11+9)=10,15[(x-10)

2+(y-10)2+1+1]=2,∴x+y=20,x2+y2=208.∴(x+y)2=x2+y2+2xy,即208+2xy=400,∴xy=96.∴(x-y)2=x2+y2-2xy=16,∴|x-y|=4,故选D.]4.(2020·全国卷Ⅰ

)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两

个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表等级ABCD频数4020

2020乙分厂产品等级的频数分布表等级ABCD频数28173421(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?[解](1

)由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为A级品的概率的估计值为40100=0.4;乙分厂加工出来的一件产品为A级品的概率的估计值为28100=0.28.(2)由数据知甲分厂加工出来的

100件产品利润的频数分布表为利润6525-5-75频数40202020因此甲分厂加工出来的100件产品的平均利润为-7-65×40+25×20-5×20-75×20100=15.由数据知乙分厂加工出来的100件产品

利润的频数分布表为利润70300-70频数28173421因此乙分厂加工出来的100件产品的平均利润为70×28+30×17+0×34-70×21100=10.比较甲、乙两分厂加工的产品的平均利润,应选甲分厂承

接加工业务.考点二茎叶图1.茎叶图的三个关注点(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一.(2)重复出现的数据要重复记录,不能遗漏.(3)给定两组数据的茎叶图,估计数字特征,茎上的数字由小到大排列,一般“重心”下移

者平均数较大,数据集中者方差较小.注意“叶”中数不一定按大小次数排列.2.利用茎叶图解题的关键是抓住“叶”的分布特征,准确从中提炼信息.3.以茎叶图为载体,一般考查中位数、平均数、方差.1.(2020·平顶山模拟)中国诗词大会的播出引发了全民的读书热,某

小学语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如图所示.若规定得分不小于85分的学生得到“诗词达人”的称号,小于85分且不小于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号,根据该次比赛的成绩,按照称号的不同进行分层抽

样抽选10名学生,则抽选的学生中获得“诗词达人”称号的人数为()A.2B.4C.5D.6A[由茎叶图可得,获“诗词达人”称号的有8人,据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词达人”

称号-8-的人数为8×1040=2(人).]2.(2020·长沙质检)为比较甲乙两地某月11时的气温情况,随机选取该月5天11时的气温数据(单位:℃)制成如图所示的茎叶图,已知甲地该月11时的平均气温比乙地该月11时的平均气温高1℃,

则甲地该月11时的平均气温的标准差为()A.2B.2C.10D.10B[甲地该月5天11时的气温数据(单位:℃)为28,29,30,30+m,32;乙地该月5天11时的气温数据(单位:℃)为26,28,29,31,31,则乙地该月11时的平均气温为(26+28+29+31+31)÷5=29(℃),

所以甲地该月11时的平均气温为30℃,故(28+29+30+30+m+32)÷5=30,解得m=1.则甲地该月11时的平均气温的标准差为15×[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2]=2.]3.空气质量指数(AirQualityI

ndex,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严

重污染.从某地一环保人士某年的AQI记录数据中,随机抽取10个,用茎叶图记录如图.根据该统计数据,估计此地该年AQI大于100的天数约为________(该年为365天).146[该样本中AQI大于100的频数是4,频率为25,由此估计该地全

年AQI大于100的频率为25,估计此地该年AQI大于100的天数约为365×25=146.]考点三频率分布直方图频率、频数、样本容量的计算方法-9-(1)频率组距×组距=频率.(2)频数样本容量=频率,频数频率=样本容量,样本容量×频率=

频数.[典例](1)为了了解某校九年级1600名学生的体能情况,随机抽查了部分学生,测试1分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图,根据统计图的数据,下列结论错误的是()A.该校九年级学生1分钟仰卧起坐

的次数的中位数为26.25B.该校九年级学生1分钟仰卧起坐的次数的众数为27.5C.该校九年级学生1分钟仰卧起坐的次数超过30的人数约为320D.该校九年级学生1分钟仰卧起坐的次数少于20的人数约为32(2)(2019·全国卷Ⅲ)为了解甲、乙

两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方

法测算出残留在小鼠体内离子的百分比,根据试验数据分别得到如下直方图:甲离子残留百分比直方图-10-乙离子残留百分比直方图记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.①求乙离子残留百分比直方图中a,b的值;②分别估计甲、乙离子残留百分比的平均值(

同一组中的数据用该组区间的中点值为代表).(1)D[由频率分布直方图可知,中位数是频率分布直方图面积等分线对应的数值,是26.25;众数是最高矩形的中间值27.5;1分钟仰卧起坐的次数超过30的频率为0.2,所以估计1分钟仰卧起坐的次数超过30的

人数为320;1分钟仰卧起坐的次数少于20的频率为0.1,所以估计1分钟仰卧起坐的次数少于20的人数为160.故选D.](2)[解]①由已知得0.70=a+0.20+0.15,故a=0.35.b=1-0.05-0.15-0.70=

0.10.②甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8

×0.15=6.00.点评:(1)频率分布直方图的纵坐标是频率组距,而不是频率,切莫与条形图混淆.(2)频率分布直方图考查时,重视求平均数、中位数、方差,计算要准确,解决突破口是各个矩形面积之和为1.[跟进训练]1.为了了解某校高三学生的视

力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图,由于不慎将部分数据丢失,但知道后5组-11-频数和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为()A.64B.54C.4

8D.27B[前两组中的频数为100×(0.05+0.11)=16.因为后五组频数和为62,所以前三组为38.所以第三组频数为22.又最大频率为0.32,对应的最大频数为0.32×100=32.所以a=22+32=54.

]2.(2020·石家庄模拟)“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称.某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分为100分(90

分及以上为认知程度高).现从参赛者中抽取了x人,按年龄分成5组,第一组:[20,25),第二组:[25,30),第三组:[30,35),第四组:[35,40),第五组:[40,45],得到如图所示的频率分布

直方图,已知第一组有6人.(1)求x;(2)求抽取的x人的年龄的中位数(结果保留整数);(3)从该市大学生、军人、医务人员、工人、个体户五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记为1~5组,从这5个按年龄分的组和5个按职

业分的组中每组各选派1人参加知识竞赛,分别代表相应组的成绩,年龄组中1~5组的成绩分别为93,96,97,94,90,职业组中1~5组的成绩-12-分别为93,98,94,95,90.(ⅰ)分别求5个年龄组和5个职业组成绩的平均数和方差;(ⅱ)以上述数据为依据,评价5

个年龄组和5个职业组对“一带一路”的认知程度,并谈谈你的感想.[解](1)根据频率分布直方图得第一组的频率为0.01×5=0.05,∴6x=0.05,∴x=120.(2)设中位数为a,则0.01×5+0.07×5+(a-30)×0.06=0.5,∴a=953≈32,则中位数为3

2.(3)(ⅰ)5个年龄组成绩的平均数为x1=15×(93+96+97+94+90)=94,方差为s21=15×[(-1)2+22+32+02+(-4)2]=6.5个职业组成绩的平均数为x2=15×(93+98+94+95+90)=94,方差为s22=15×[(-1)2+42+02+12+(-4

)2]=6.8.(ⅱ)从平均数来看两组的认知程度相同,从方差来看年龄组的认知程度更稳定(感想合理即可).

管理员店铺
管理员店铺
管理员店铺
  • 文档 474179
  • 被下载 24
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?