2021-2022学年高中数学人教版必修2教案:2.2.1直线与平面平行的判定 2 含解析【高考】

DOC
  • 阅读 2 次
  • 下载 0 次
  • 页数 8 页
  • 大小 306.000 KB
  • 2024-11-06 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
2021-2022学年高中数学人教版必修2教案:2.2.1直线与平面平行的判定 2 含解析【高考】
可在后台配置第一页与第二页中间广告代码
2021-2022学年高中数学人教版必修2教案:2.2.1直线与平面平行的判定 2 含解析【高考】
可在后台配置第二页与第三页中间广告代码
2021-2022学年高中数学人教版必修2教案:2.2.1直线与平面平行的判定 2 含解析【高考】
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的3 已有2人购买 付费阅读2.40 元
/ 8
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】2021-2022学年高中数学人教版必修2教案:2.2.1直线与平面平行的判定 2 含解析【高考】.doc,共(8)页,306.000 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-89f182bbe28b85441d5dd13593bd26a4.html

以下为本文档部分文字说明:

-1-2.2直线与平面平行的判定(第一课时)【教学内容解析】本节教材选自人教A版数学必修Ⅱ第二章第二节,本节内容在立体几何学习中起着承上启下的作用,具有重要的意义与地位.之前的课程已学过空间点、线、面的位置关系及4个公理.结合有关

的实物模型,通过直观感知、合情推理、探究说理、操作确认,归纳出直线与平面平行的判定定理.本节课的教学重点是直线与平面平行的判定定理的初步理解和简单应用.本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线面平行的性质、面面平行的判定与性质的学习作用重大,因

为研究过程渗透的数学思想都是化归与转化.【教学目标设置】通过直观感知——观察提炼——探究说理——操作确认的认识方法初步理解并掌握直线与平面平行的判定定理.初步掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理,

培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力.通过定理的运用,让学生学会在具体问题中正确使用定理,理解使用定理的关键是找平行线,并知道证明线线平行的一般途径.通过对空间直线与平面平行的判定定理的感知、提炼、论

证以及应用的过程,培养学生发现规律、认识规律并利用规律解决问题的能力.在定理的获得和应用过程中进一步渗透化归与转化的数学思想,渗透立体几何中将空间问题降维转化为平面问题的一般方法.通过本节课的学习,进一步培养学生从生活空间中抽象出

几何图形关系的能力,提高演绎推理、逻辑记忆的能力.让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感.通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识.【学生学情分析】通过前面课程

的学习,学生对简单几何体的结构特征有了初步认识,对几何体的直观图-2-及三视图的画法有了基本的了解.结合他们生活和学习中的空间实例,学生对空间图形的基本关系也有了大致的了解,初步具备了最朴素的空间观念.由于刚刚接触立体几何不久,学习经验有限,学习立体几何所应具备的语言表达能力及空间想象能

力相对不足,他们从生活实例中抽象概括出问题的数学本质的能力相对欠缺,从具体情境发现并归纳出直线与平面平行的判定定理以及对定理的理解是教学难点.【教学策略分析】新课程倡导学生自主学习,要求教师成为学生学习的引导者、组织者、合作者和促进者,使教学过程成为师生交流、积极互动、共同发展的过程.综合考

虑教学内容与学生学情,本节课的教学遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,合情推理,探究说理,操作确认,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭

示直线与平面平行的判定定理、理解数学概念,领会数学思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象能力,提高学生的数学逻辑思维能力.【教学过程】(一)复习回顾、铺陈蓄势

【教学实录】教师简单回顾了之前学习的课程内容后,面向全体同学提出问题1:根据公共点的情况,空间中直线a和平面有哪几种位置关系,并请一位学生代表上黑板作图表示直线与平面的位置关系,其余同学在座位上同步完成.接着,多媒体幻灯片展示了空间直线与平面的三种位置关系的三种

语言表示.同时强调:我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为a.引导学生回顾总结空间直线与平面的三种位置关系是按照直线与平面的公共点的个数来分类的.直线在平面内的情形公理1已经解决,直线与平面相交的情形将在后续课程中研究,本节课我们将研究直线与

平面平行这一位置关系.面向全体同学提出问题2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法.带领同学体会本节课学习的必要性,引出课题.设计意图:教学预设以生本教育观为指导,充分尊重学生的学习主体地位.从建构主义-3-αa理论来看,学生原有认知结构

是新授课的基础.本节课学生已有的知识储备是直线与平面平行的定义.教学预设从数学学科内部发展的顺序来说明本节课学习任务的确定,从数学学科内部发展的需要来引起认知冲突并说明本课学习的必要性,逻辑性强,利于知识系统的主动建构.(二)列举实例、直

观感知面向全体同学提问:在日常生活中,哪些实例给我们以直线与平面平行的印象呢?(师生充分交流,学生容易指出教室的日光灯与地面平行、黑板的边缘与地面平行、足球场上球门的横梁与足球场平行等等.)设计意图:使学生有充分的具体情境下的认知体验,为后续内容做好铺垫,引导

学生学自己身边的数学,学有用的数学.通过充分的直观感知,努力促进学生空间观念的构建.列举身边的实例后,面向全体同学抛出问题1:单凭感觉可靠吗?(让学生单凭直观感觉,判断直线a与平面α是否平行)进而给出问题2:该怎样判定直线与平面平行呢?设计意图:问

题1是为了设置一个有争议的情境,眼见不一定为实,进而调动学生的探究欲望.问题2是为下面动手操作、合作探究,发现判定定理作了一个引子,埋了一个伏笔.(三)动态演示、抽象概括从同学们列举的日光灯的实例出发,学生容易发现如果将日光灯平

稳..下降,最终日光灯管会平稳..地落到地面内来,通过多媒体动态演示这一过程.将原来日光灯所在直线记作a,平移到地面(记作平面α)内之后记作直线b,同学们可以发现a//b(强调直线a,b没有公共点).教师

引导学生发现直线a与b没有公共点.在平面α内平移b,得到直线c,不难发现a//c(强调直线a,c没有公共点).紧接着,提出问题,直线a能与平面α内的无数条直线都平行吗?(能)教师追问,直线a与平面α内的这无数条直线有公共点吗?(没有)教师带领全体同学思考一个问题:“反过

来,直线a与平面α内的无数条直线都平行,则a与平面α平行吗?”-4-符号语言:////abaab图形语言:(此处可能是需要突破的地方,视学生反应情况可以辅以几何画板软件展示无数条直线无限细密地“铺满”平面.)教师追问,直线a与平面内的无数条直线都平行

,a与这些直线有公共点吗?(没有)结合几何画板的展示过程,提问:直线a与平面α有公共点吗?(没有)教师继续追问:直线a与平面α没有公共点意味着什么?(a//α)教师充分肯定同学们的发现后,揭示数学本质:平面α内的任一点均在直线a的某条平行线上,于是,直线a与平面α没有公共点,即a//α.之

后,教师追问:“需要平面外的直线a与平面α内的无数条直线都平行吗?”(不需要!)追问:“几条就可以了?”(一条!)“为什么?”(平面内的无数条直线都可以通过平面内的一条直线平移得到)教师此时可抓住时机,面向全体同学发问:大家能

得到空间直线与平面平行的一个判定方法吗?定理5.1(直线和平面平行的判定定理)平面外的一条直线与平面内的一条直线平行,则该直线和此平面平行.(四)动手操作、实验确认接下来,教师引导学生通过动手实验操作,进一步确认定理的正确性.请全体同学将课本按如图所示的方式直立地放在

桌面上,并借助多媒体动画演示,引导学生探究思考书页的边缘所在直线与桌面、与另一张书页所在平面的位置关系,进一步巩固对定理的理解.然后,请同学们考虑该定理用符号语言应当怎样表述?并请一位同学上黑板板演,教师及时纠正.经历了前面的探究过程,学生不难指出该定理前提

条件的三个关键词:“平面外”、“平面内”、“平行”.-5-接下来,请同学们指出我们在“空间图形的基本关系”一课中用图形表示空间直线与平面平行的合理性.为防止学生因为思维定势造成的负迁移,教师通过实物展示空间直线与平面平行的其它情形(将上图中直线a,b作水平旋转得到如图

所示的情形).同时强调只要在平面内找到一条..直线与平面外的直线平行即可.最后,教师引导学生指出此处渗透的处理立体几何问题的基本思想:将空间问题降维转化为平面问题解决(线线平行线面平行).设计意图:定理的发现与论证过程采用了“观察模型—直观感知

—理性分析—抽象概括—操作确认—思考探究”的方式展开.新课程教材中回避了定理的理论证明,但考虑到数学的理性精神及良好的学情状况,在定理的生成过程中仍然强调了“说理”.在教师的引导下,经过推理,定理生成.考虑到学生主体未能直接动手操作,印象未必深刻.为

此,设计了两个学生活动,让他们在动手操作中体会定理的正确性,给他们充分的思考时间与空间,让他们主动建构新知.定理生成后,①教师强调三种数学语言的转化,利用判定定理反观线面平行的图形表示的合理性,并通过直观演示,防止学生出现思维定势;②教师及时给出关于直线与

平面平行的两个假命题,继续从反面强调定理成立的三个要素缺一不可.以上的教学预设与生成都是从学生的最近发展区设计问题,帮助学生主动辨明定理的实质,教师在其中板演的角色仍然是一个组织者和引导者,学习的主体是学生.(五)定理运用、形成技能(多媒体幻灯片演示)想一想:

判断下列命题的真假并说明理由:①若一条直线不在平面内,则该直线与此平面平行()②若一条直线与平面内的无数条直线平行,则该直线与此平-6-面平行()③如图,a是平面α内的一条给定的直线,若平面α外的直线b不平行于直线a

,则直线b与平面α就不平行()(教师带领全体同学辨析)证一证:如图1,已知空间四边形ABCD中,E、F分别是AB、AD的中点,判断并证明EF与平面BCD的位置关系.全班同学尝试解答的同时,请一位同学上黑板解答,教师及时规范学生的答题,适时点评.师生共同总结出运用定理的关键是找线(平面内)线(

平面外)平行.面向全体同学提问,初中平面几何中,我们学习了哪些判定直线与直线平行的方法?(利用三角形的中位线、梯形的中位线、平行四边形的对边、平行线分线段成比例定理的逆定理、同位角相等、内错角相等、同旁内角互

补……)教师可以顺势给出一个简单的变式:如图2,将△ABD改为梯形BDHG,E、F分别是BG、DH的中点,判断并证明EF与平面BCD的位置关系.最后,如果学情允许,给出如下的操作思考:如图,正方体ABCD-A1B1C1D1中,P是棱A1B1的中点,过点P画一条直线使之与截面A1BCD1平

行.问题提出后,给学生足够的时间思考讨论,学生取BB1的中点,C1D1的中点得到画法应该不困难.难点是其它可能的情形.这里,到底讲到什么程度,也应当视学情而定,尊重课堂教学的生成.为使更多的同学有一个直观的体验,将借助几何动

画将正方体运动起来,变换观察的角度,让他们有一个直观的体验.图1图2-7-设计意图:“想一想”的设置是为了进一步从反例出发促使学生对判定定理的准确理解.“证一证”是为了让学生通过动手尝试证明问题,掌握运用定理解决问题的一般方

法,并进一步从实践操作层面体会运用定理需满足的三个要点缺一不可,学生经历了解题过程后主动发现运用定理的关键是找平行线.“操作思考”更是借助一题多解关注不同层次的同学的不同发展需求,让不同的同学获得不同的发展.(六)收获感悟、总结提高先由学生口头总结,然后教师归纳总结:(多媒体幻灯片展示

)一、直线与平面平行的判定定理;二、证明直线与平面平行的方法;三、运用判定定理时的几个要点;四、运用定理的关键:找平行线;五、立体几何的基本思想:化归.(七)分层作业共同进步基本作业:1、如图,在空间四边形ABCD中,E、F分别为AB、AD上的点.若AEAF

ABAD=,判断并证明EF与平面BCD的位置关系.拓展提高:1、如图,在长方体ABCD-A1B1C1D1中,E是棱CC1上的点,试确定点E的具体位置使AC1//平面BDE.2、尝试严格地证明直线与平面平行的判定定理.附:板书设计平行关系的判定多媒体投影区域直线与平面平行的判定证一证操作思考-

8-想一想小结作业反思与改进

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?