【文档说明】天津市第一中学滨海学校2021届高三上学期开学考试数学试卷 含解析.doc,共(16)页,1.198 MB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-86c3a786e4514b6f26ce9a90b5ab3e81.html
以下为本文档部分文字说明:
天津一中滨海学校高三年级数学学科零月考试卷本测试时长120分钟,满分150分.一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2|4
0Axx=−,集合{|10}Bxx=−,则AB=()A.(1,2)B.(1,2]C.[2,1)−D.(2,1)−————C分析:分别解不等式,再求交集,即可得出结果.解答:()()2|40=|220
=|22Axxxxxxx=−−+−,{|10}={|1}Bxxxx=−,所以)|212,1xABx−=−=故选:C2.函数241xyx=+的图象大致为()A.B.C.D.————A分析:由题意首先确定函数的奇偶性,然后考查函数在特殊点的函
数值排除错误选项即可确定函数的图象.解答:由函数的解析式可得:()()241xfxfxx−−==−+,则函数()fx为奇函数,其图象关于坐标原点对称,选项CD错误;当1x=时,42011y==+,选项B错误.故选:A.点拨:函数图象的识辨可从以下方面入手:(1
)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方
法排除、筛选选项.3.设xR,则“11x”是“121x”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件————B若11,xx取2时,121x不成立,若121x,则0
x,可得101,x“11x”是“112x”的必要而不充分条件,故选B.4.已知函数21,0()22,04xaxfxxxx−=−+的值域是[8,1]−,则实数a的取值范围是(
)A.(,3]−−B.[3,0)−C.[3,1]−−D.{3}−————B分析:由二次函数的性质可得当04x时,函数的值域刚好为[﹣8,1],故只需y=﹣12x,0ax的值域为[﹣8,1]的子集,可得a的不等式,结合指数函数的单调性可得.解答:当04x
时,()()22211fxxxx=−+=−−+,所以()81fx−;当0ax时,()12xfx=−为增函数,所以()112afx−−,因为()fx的值域为[8,1]−,所以1820aa−−,故30a−,故选:B.点拨:易错点睛
:分段函数的值域,应是函数在不同范围上的函数值的取值集合的并,解题中应该根据函数的值域决定函数在不同范围上的函数值的集合之间的关系.5.已知函数()lgfxx=,0ab,()()fafb=,则22abab
+−的最小值等于().A.5B.23C.23+D.22————D试题分析:因为函数()lgfxx=,0ab,()()fafb=所以lglgab=−所以1ab=,即1ab=,0ab22abab+−22()2()22()ababababababab−+−+
===−+−−−22()22abab−=−当且仅当2abab−=−,即2ab−=时等号成立所以22abab+−的最下值为22故答案选D考点:基本不等式.6.已知1.12a=,0.45b=,5ln2c=,则().A.bc
aB.acbC.bacD.abc————D分析:利用根式的运算性质、指数函数、幂函数单调性可得a,b的大小关系,利用对数函数的单调性即可得出c<1.解答:∵1.11222a==,且20.45555=5=25322b==,∴2
ba,5lnln12ce==.∴abc.故选:D.7.从5双不同的袜子中取4只,使至少有2只袜子配成一双的可能取法种数为()A.20B.30C.130D.140————C分析:由对立事件A为“4只没有可配对的袜子”的取法种数4452C
,总取法410C,即可知至少有2只袜子配成一双的可能取法种数4441052CC−,即可知正确选项.解答:“4只至少有2只袜子配成一双”的对立事件A为“4只没有可配对的袜子”,∴A的取法数为445280C=种,而总取法有4
10210C=种,∴“4只至少有2只袜子配成一双”可能取法种数为21080130−=种.故选:C8.已知函数()sin3fxx=+.给出下列结论:①()fx的最小正周期为2;②2f是()fx的
最大值;③把函数sinyx=的图象上所有点向左平移3个单位长度,可得到函数()yfx=的图象.其中所有正确结论的序号是()A.①B.①③C.②③D.①②③————B分析:对所给选项结合正弦型函数的性质逐一判断即可.解答:因为()s
in()3fxx=+,所以周期22T==,故①正确;51()sin()sin122362f=+==,故②不正确;将函数sinyx=的图象上所有点向左平移3个单位长度,得到sin()3yx=+的图象,故③正确.故选:B.【点晴】本题主要考查正弦型
函数的性质及图象的平移,考查学生的数学运算能力,逻辑分析那能力,是一道容易题.9.已知函数()xfxxe=,方程()()2+1=0fxtfx+()tR有四个实数根,则t的取值范围为()A.21,ee++B.21,ee+−−C.21,
2ee+−−D.212,ee+————B分析:利用导数,判断函数()fx的单调性及最值,从而画出该函数的图像;再用换元,将问题转化为一元二次方程根的分布问题,即可求解参数范围.解答:令()xgxxe=,故(
)()1xgxex=+,令()0gx=,解得1x=−,故函数()gx在区间(),1−−单调递减,在()1,−+单调递增,且在1x=−处,取得最小值()11ge−=−.根据()fx与()gx图像之间的关系,即可绘制函数()fx的图像如
下:令()fxm=,结合图像,根据题意若要满足()()2+1=0fxtfx+有四个根,只需方程210mtm++=的两根1m与2m满足:其中一个根110,?me,另一个根21me或20m=.①
当方程210mtm++=的一个根110,?me,另一个根20m=,将0m=代入,可得10=矛盾,故此种情况不可能发生;②当方程210mtm++=的一个根110,?me,另一个根21me()21
mmtm=++,要满足题意,只需()10,00e即可即2110,?1?0tee++,解得21,ete+−−.故选:B.点拨:本题考查利用导数研究函数的单调性,以及二次方程根的分布问题,
属重点题型.二、填空题:本大题共6小题,每小题5分,共30分.10.某信号兵从红、黄、蓝、绿、紫五面不同颜色的旗中任取三面,从上到下挂在竖直的旗杆上表示信号,若同时取蓝、绿时,则蓝旗必须挂在绿旗上面,这样可组成的信号个数有_________.————51分析:先求出任取三
面,从上到下挂在竖直的旗杆上的种数,再排除同时取蓝、绿时,蓝旗挂在绿旗下面的情况,即可求出.解答:从红、黄、蓝、绿、紫五面不同颜色的旗中任取三面,从上到下挂在竖直的旗杆上,共3560A=种,其中,同时取蓝、绿时,蓝旗挂在绿旗下面的情况有11339CA=种,则可组成的信号个数有60951−=.故答
案为:51.11.在61(2)xx−的展开式中2x的系数为__________.(用数字作答)————240通项公式Tr+1=()6r612rrCxx−−=(﹣1)r26﹣r6rCx6﹣2r,令6
﹣2r=2,解得r=2.∴612xx−的展开式中x2的系数=4262C=240.故答案为24012.已知函数122,0()1log,0xxfxxx−=−,若|()|2fa,则实数a的取值范围是____
_____.————1(,][8,)2−+分析:由题设知()2fa或()2fa−,根据分段函数解析式,列不等式组即可求a的取值范围.解答:由|()|2fa,即()2fa或()2fa−,∴结合函数解析式
知:1220aa−或21log20aa−或21log20aa−−,∴解得:0a或102a或8a.∴a的取值范围1(,][8,)2−+.点拨:关键点点睛:由题设有()2fa或()2fa−,结合分段函数的性质,解不等式求参数的范围.13.
设2()lg2xfxx+=−,则2()()2xffx+的定义域为_______.————(4,1)(1,4)−−分析:由原函数求出定义域为{|22}−xx,由复合函数可得222x−且222x−,解出不等式,求交集即可.解答:由
202xx+−得22x−,故222x−且222x−,22442−−xx,2221−−xx或1x解得:(4,1)(1,4)−−x.故答案为:(4,1)(1,4)−−点拨
:本题考查了求复合函数的定义域,考查了运算求解能力和逻辑推理能力,属于基础题目.14.已知tan34+=,则2sin22cos−的值为______————45−分析:利用两角和差正切公式可求得1tan2=,利用二倍角公式将所求式子构造为关于正余弦的齐次式,则配凑分母
22sincos+,分子分母同时除以2cos可构造出关于tan的式子,代入1tan2=求得结果.解答:tantan1tan4tan341tan1tantan4+++===−−,解得:1tan2=2222222sincos2coss
in22tan22sincos2cossincostan12cos−−=−==++−122421514−==−+本题正确结果:45−点拨:本题考查关于正余弦的齐次式的求解问题,涉及到两角和差正切公式的应用、同角三角函数关系的应用,属于常考题型.15.已知
函数()11,03ln,0xxfxxx+=若函数()0fxax−=恰有3个零点,则实数a的取值范围为________.————11,3e分析:画出()11,03ln,0xxfxxx+=的图像,再分析()fx与yax=的交点个数即可.解答:画出函数(
)fx的图像,如图所示:先求yax=与lnyx=相切时的情况,由图可得此时lnyx=,1'yx=设切点为()00,lnxx,则0001lnaxxax==,解得0xe=,1ae=.此时xye=.斜率113e.又当13a=时13yx
=与11,03xx+平行也为临界条件.故11,3ae.故答案为:11,3e点拨:本题主要考查了数形结合求解函数零点个数的问题,需要根据题意画出图像,再分析临界条件分析.属于中档题.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤.
16.已知函数2()sinsin3cos2fxxxx=−−.(1)求()fx的最小正周期和最大值;(2)讨论()fx在2,63上的单调性.————(1)最小正周期为,最大值为312−;(2)在5,612单调递增
,在52,123单调递减.分析:(1)由条件利用三角恒等变换化简函数,再利用正弦函数的周期性和最值求得()fx的最小正周期和最大值;(2)根据20,3x−,利用正弦函数的单调性,分类讨论求得()fx的单调性.解答:(1)2()sinsin3cos2
fxxxx=−−2sincos3cosxxx=−11cos2sin2322xx+=−3sin232x=−−,则()fx的最小正周期为22T==,当22,32xkkZ−=+,即25,1=+xkkZ时,()fx取得最大值为312−
;(2)当2,63x时,20,3x−,则当20,32x−,即5,612x时,()fx为增函数;当2,32x−时,即52,123x时,()fx为减函数,()fx在5,6
12单调递增,在52,123单调递减.点拨:本题考查正弦函数的性质,解题的关键是利用三角恒等变换化简函数.17.在ABC中,角A,B,C所对的边分别为a,b,c.已知22,5,13abc===.(1)求角C的大小;(2)求sinA的值;
(3)求sin26A+的值.————(1)45;(2)21313;(3)123526+分析:(1)由余弦定理求出cosC,即可得出角C的大小;(2)由正弦定理即可求出;(3)求出cosA,由二倍角公式求出sin2,cos2AA
,再由和的正弦公式即可求出.解答:(1)由余弦定理可得222825132cos222225abcCab+−+−===,()0,180C,45C=;(2)由余弦定理可得sinsinacAC=,则222sin2132sin1313aCAc===;(3)ac
,AC,2313cos1sin13AA=−=,则21331312sin22sincos2131313AAA===,25cos22cos113AA=−=,123511235sin2sin2coscos2sin666
13213226AAA++=+=+=.18.在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,
现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(I)求接受甲种心理暗示的志愿者中包含A1但不包含1B的频率.(II)用X表示接受乙种心理暗示
的女志愿者人数,求X的分布列与数学期望EX.————(1)518(2)见解析(I)记接受甲种心理暗示的志愿者中包含1A但不包含1B的事件为M,计算即得(II)由题意知X可取的值为:0,1,2,3,4.利用超几何分布概率计算公式得X的分布列为X01234P1
425211021521142进一步计算X的数学期望.试题解析:(I)记接受甲种心理暗示的志愿者中包含1A但不包含1B的事件为M,则485105().18CPMC==(II)由题意知X可取的值为:0,1,2,3,4.则5651
01(0),42CPXC===41645105(1),21CCPXC===326451010(2),21CCPXC===23645105(3),21CCPXC===14645101(4),42CCPXC===因此X的分布列为X01234P1425211021521142
X的数学期望是0(0)1(1)2(2)3(3)4(4)EXPXPXPXPXPX==+=+=+=+==151051012342.4221212142++++=【名师点睛】本题主要考查古典概型的概率公式和超几何分布概率计算公式、随
机变量的分布列和数学期望.解答本题,首先要准确确定所研究对象的基本事件空间、基本事件个数,利用超几何分布的概率公式.本题属中等难度的题目,计算量不是很大,能很好的考查考生数学应用意识、基本运算求解能力等.19.设()fx是定义在实数集R上的奇函数,且对任意实数x恒满足(2)()fx
fx+=−,当[0,2]x时,2()2fxxx=−.(1)求证:()fx是周期函数;(2)当[2,4]x时,求()fx的解析式;(3)计算:(0)(1)(2)(2021)ffff++++.————(1)证明见解析;(2)()268fxxx=−+;(3)0分析:(1
)由已知(2)()fxfx+=−,将x换为2x+可得;(2)根据函数为奇函数可得[2,0]x−时的解析式,再由周期性可求;(3)求出()(0)0,(2)0,(1)1,31ffff====−,利用周期性可求出.解答:(1)证明:(2)()fxfx+=−,(4)(
2)()fxfxfx+=−+=,()fx是周期为4的周期函数;(2)当[2,0]x−时,[0,2]x−,则22()2()()2fxxxxx−=−−−=−−,又()fx是奇函数,2()()2fxfx
xx−=−=−−,2()2fxxx=+,又当[2,4]x时,4[2,0]x−−,2(4)(4)2(4)fxxx−=−+−,又()fx是周期为4的周期函数,22()(4)(4)2(4)68fxfxxxxx=−=−+−=−+,即当[2,4]x,()268fxxx=−+;(3)
()(0)0,(2)0,(1)1,31ffff====−,又()fx是周期为4的周期函数,(0)(1)(2)(2021)ffff++++()(0)(1)(2)53(0)(105)ffffff=+++++()5050011000=+++−++=.点拨:本题考查了
函数解析式的求解和函数周期性的应用,解题的关键是正确求出函数的周期.20.已知函数()(0)afxxbxx=++,其中,abR.(1)曲线()yfx=在点(2,(2))Pf处的切线方程为31yx=+,求函数
()fx的解析式;(2)讨论函数()fx的单调性;(3)若对于任意的1,22a,不等式()10fx在1,14上恒成立,求b的取值范围.————(1)()89=−+fxxx;(2)答案见解析;(3)74b分析:(1)有导数的几何意义,列方程求解,
即可得出结果.(2)对函数求导,分类讨论0a和0a,即可求出函数的单调区间.(3)不等式()10fx在1[,1]4上恒成立max()10fx,而对于任意的1[,2]2a,无论1[,1]4与a
的关系如何,最大值都在端点处取得.经过计算即可得出结果.解答:(1)()21afxx=−,()2=1-34=af,解得8a=−由切点(2,(2))Pf在直线31yx=+上可得,27,9−+==bb函数解析式
为()89=−+fxxx(2)()21afxx=−当0a时,()0fx,函数()fx在(,0),(0,)−+上单调递增,当0a时,()=0fx,解得xa=当x变化时,'(),()fxfx的变化情况如下:x(,)a−−a−(0),−a(0,)aa(+),a'()fx
+0--0+()fx极大值极小值所以()fx在(,)a−−和(+),a单调递增,(0),−a和(0,)a单调递减(3)由(2)知,()fx在1[,1]4上的最大值为14f和()1f中较大者,对于任意的
1[,2]2a,不等式()10fx在1[,1]4上恒成立,当且仅当139()10444(1)109fbafba−−,对任意的1[,2]2a成立,可得74b点拨:关键点点睛
:不等式()10fx在1[,1]4上恒成立max()10fx,而对于任意的1[,2]2a,无论1[,1]4与a的关系如何,最大值都在端点处取得.本题考查了运算求解能力和逻辑推理能力,属于中档题目.