【文档说明】高中数学人教版必修2教案:2.1.3 空间中直线与平面之间的位置关系 (系列四)含答案【高考】.doc,共(5)页,176.500 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-83a72f4ebccd80d035f79a71fcf66084.html
以下为本文档部分文字说明:
1空间中直线与平面之间的位置关系【教学目标】1.结合图形正确理解空间中直线与平面之间的位置关系.2.进一步熟悉文字语言、图形语言、符号语言的相互转换.3.进一步培养学生的空间想象能力.【重点难点】正确判定直线与平面的位置关系.【课时安排】1课时【教学过程
】导入新课观察长方体(图1),你能发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与长方体ABCD—A′B′C′D′的六个面所在平面有几种位置关系?图1推进新课新知探究2提出问题①什么叫做直线在平面内?②什么叫做直线与平面相交?③什么叫做直线与平面平行?④直线在平
面外包括哪几种情况?⑤用三种语言描述直线与平面之间的位置关系.活动:教师提示、点拨从直线与平面的交点个数考虑,对回答正确的学生及时表扬.讨论结果:①如果直线与平面有无数个公共点叫做直线在平面内.②如果直线与平面有且只有一个公共点叫做直线与平
面相交.③如果直线与平面没有公共点叫做直线与平面平行.④直线与平面相交或平行的情况统称为直线在平面外.⑤直线在平面内aα直线与平面相交a∩α=A直线与平面平行a∥α应用示例例1下列命题中正确的个数是
()①若直线l上有无数个点不在平面α内,则l∥α②若直线l与平面α平行,则l与平面α内的任意一条直线都平行③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行④若直线l与平面α平行,则l与
平面α内的任意一条直线都没有公共点A.0B.1C.2D.3分析:如图2,3图2我们借助长方体模型,棱AA1所在直线有无数点在平面ABCD外,但棱AA1所在直线与平面ABCD相交,所以命题①不正确;A1B1所在直线平行于平面
ABCD,A1B1显然不平行于BD,所以命题②不正确;A1B1∥AB,A1B1所在直线平行于平面ABCD,但直线AB平面ABCD,所以命题③不正确;l与平面α平行,则l与α无公共点,l与平面α内所有直
线都没有公共点,所以命题④正确.答案:B变式训练请讨论下列问题:若直线l上有两个点到平面α的距离相等,讨论直线l与平面α的位置关系.图3解:直线l与平面α的位置关系有两种情况(如图3),直线与平面平行或直
线与平面相交.点评:判断直线与平面的位置关系要善于找出空间模型,结合图形来考虑,注意考虑问题要全面.例2已知一条直线与三条平行直线都相交,求证:这四条直线共面.已知直线a∥b∥c,直线l∩a=A,l∩b=B,l∩c=C.求证:l与a、b、c共面.证明:如图4,∵a∥b,图
4∴a、b确定一个平面,设为α.∵l∩a=A,l∩b=B,∴A∈α,B∈α.4又∵A∈l,B∈l,∴ABα,即lα.同理b、c确定一个平面β,lβ,∴平面α与β都过两相交直线b与l.∵两条相交直线确定一个平面,∴α与β重合.故l与a、b、c共面.变式训练已知aα
,bα,a∩b=A,P∈b,PQ∥a,求证:PQα.证明:∵PQ∥a,∴PQ、a确定一个平面,设为β.∴P∈β,aβ,Pa.又P∈α,aα,Pa,由推论1:过P、a有且只有一个平面,∴α、β重合.∴PQα.点评:证明两个平面重合是证明直线在平面内问题的重要方法.拓展
提升过空间一点,能否作一个平面与两条异面直线都平行?解:(1)如图5,C′D′与BD是异面直线,可以过P点作一个平面与两异面直线C′D′、BD都平行.如图6,图5图6图7显然,平面PQ是符合要求的平面.(2)如图7,当点P与直线C′D′确定的平面和直线BD平行时,不存在过P
点的平面与两异面直线C′D′、BD都平行.点评:判断一个命题是否正确要善于找出空间模型(长方体是常用空间模型),另外考虑问题要全面即注意发散思维.课堂小结本节主要学习直线与平面的位置关系,直线与平面的位置关系
有三种:①直线在平面内——有无数个公共点,5②直线与平面相交——有且只有一个公共点,③直线与平面平行——没有公共点.另外,空间想象能力的培养是本节的重点和难点.作业课本习题2.1A组7、8.