河北省保定市2022-2023学年高一上学期期末考试 数学答案

DOC
  • 阅读 2 次
  • 下载 0 次
  • 页数 6 页
  • 大小 56.680 KB
  • 2024-09-30 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
河北省保定市2022-2023学年高一上学期期末考试 数学答案
可在后台配置第一页与第二页中间广告代码
河北省保定市2022-2023学年高一上学期期末考试 数学答案
可在后台配置第二页与第三页中间广告代码
河北省保定市2022-2023学年高一上学期期末考试 数学答案
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的3 已有2人购买 付费阅读2.40 元
/ 6
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】河北省保定市2022-2023学年高一上学期期末考试 数学答案.docx,共(6)页,56.680 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-830f5963029f25ec36ea652aa97786eb.html

以下为本文档部分文字说明:

高一数学试题参考答案一、1.C2.C3.B4.A5.C6.B7.A8.D二、9.ABC10.BD11.AC12.AD三、13.(1,2)14.a≤-215.b<c<a.16.0<ω≤23四、17解(1)当1a=时,B={𝑥|1<𝑥<3},……………1分A={𝑥|−2≤𝑥≤2},………

……3分故AUB={𝑥|−2≤𝑥<3}.……………5分(2)由A⊆B知,{2−𝑎<−22𝑎+1>2……………7分⟹{𝑎>4𝑎>12……………9分因此𝑎>4综上所述𝑎>4.……………10分18.解:(1)𝑓(𝑥)=2cos(2�

�+𝜋3)2kπ≤2𝑥+𝜋3≤2kπ+π,k∈Z,……………1分即kπ−π6≤𝑥≤kπ+π3,k∈Z时𝑓(𝑥)单调递减;……………2分2kπ+π≤2𝑥+𝜋3≤2kπ+2π,k∈Z,……………3分即kπ+π3≤𝑥≤kπ+5π6,k

∈Z时𝑓(𝑥)单调递增.……………4分因此𝑓(𝑥)在[kπ−π6,kπ+π3]k∈Z上单调递减;𝑓(𝑥)在[kπ+π3,kπ+5π6]k∈Z上单调递增.……………6分(2)将𝑓(𝑥)=2cos(2𝑥+𝜋3)的图

像向右平移𝜋3个单位得到g(𝑥)=2cos(2(𝑥−𝜋3)+𝜋3)=2cos(2𝑥−𝜋3)……………8分令t=2𝑥−𝜋3当𝑥∈[0,𝜋2],则2𝑥−𝜋3∈[−𝜋3,2𝜋3]………

……10分因此t∈[−𝜋3,2𝜋3]由y=cost的图像得cos(2𝑥−𝜋3)∈[−12,1]因此g(𝑥)∈[−1,2],即g(𝑥)的值域为[−1,2].……………12分19.解:(1)当x>0时,

f(x)=4x+5x.当x<0时,﹣x>0,所以f(﹣x)=4﹣x+5﹣x.因为f(x)是定义在R上的奇函数,所以f(﹣x)=﹣f(x).所以f(x)=﹣(4﹣x+5﹣x).当x=0时,有f(﹣0)=﹣f(0),从而f(0)=0.所以f(

x)={4𝑥+5𝑥𝑥>00𝑥=0−(4−𝑥+5−𝑥)𝑥<0.……………6分(2)由(1)知,当x<0时,因为4−𝑥>0,5−𝑥>0,所以﹣(4−𝑥+5−𝑥)<0.当x=0,f(0)=0.所

以当x≤0时,f(x)≤0.而当x≤0时,2×3x>0,所以不等式f(x)>2×3x在(−∞,0]上无解.当x>0时,不等式f(x)>2×3x为4x+5x>2×3x,所以(43)𝑥+(53)𝑥>2.记函数g(x)=(43)𝑥+(53)𝑥,x≥

0因为43,53∈(1,+∞),所以函数y=(43)𝑥,y=(53)𝑥均为R上的单调增函数,所以函数g(x)为R上的单调增函数.又g(0)=1+1=2,所以当x>0时,不等式(43)𝑥+(53)𝑥>2的解集为(0,+∞).从而关于x的

不等式f(x)>2×3x的解集为(0,+∞).……………12分20.解:(1)())5cos()29(cos)(sin)2022(sin)2sin(xxxxxxf+−+−−=xxxxxxsin)cossinsinsincos=−−−−=())((……

………5分(2)f(𝑥)=sin𝑥,f(𝑥+𝜋6)=sin(𝑥+𝜋6)=14……………6分𝑥∈(π3,5π6),∴𝑥+π3∈(π2,π)……………7分∴cos(𝑥+π3)=−√154………

……8分sin𝑥=sin[(𝑥+𝜋6)−𝜋6]……………9分=sin(𝑥+𝜋6)cos𝜋6−cos(𝑥+𝜋6)sin𝜋6……………10分=14∙√32+√154∙12=√3+√158因此f(𝑥)=√3+√158……………12分21解:(1

)函数模型②p(𝑥)=𝑎|𝑥−4|+b最适合来描述这种关系……………2分0.22ab=−=代入数据,解得p(𝑥)=−0.2|𝑥−4|+2或p(𝑥)=−15|𝑥−4|+2(1≤𝑥≤7,𝑥为正整数

)…………4分(2)()()()()15100425fxcxpxxx==+−−+…………5分()()()()()()()()()()()()()()()()()()()22571510042201462805575225141510042206261205144240

4240.xxfxcxpxxxxxxxfxxfxfxxfxcxpxxxxxxxfxxfxfxfx==+−−+=+−=−−+===+−−+=++=++==当且为正整数时,在时为减函数当且为正整数时,在时为增函数综上所述当时的最大值约为万

元……………12分(此问题也可代入7个数比较大小)22.解:(1)由𝑙𝑜𝑔3𝑥+1>5得𝑙𝑜𝑔3𝑥>4……………1分得𝑥>34=81∴𝑥>81……………2分所以不等式的解集为{𝑥|𝑥>81}……………3分(2)𝑓(

𝑥)=2−𝑥+𝑚2+2𝑚在[1,+∞)上有实数解,∴𝑚2+2𝑚=𝑙𝑜𝑔3𝑥+1−2−𝑥在[1,+∞)上有实数解。y=𝑙𝑜𝑔3𝑥+1−2−𝑥在[1,+∞)上是单调增函数………4分又𝑙𝑜𝑔3𝑥+1−2−𝑥∈[12,+∞)……………5分𝑚2+2�

�∈[12,+∞)即𝑚2+2𝑚≥12……………6分解得𝑚≥−2+√62或𝑚≤−2−√62……………7分(3)由题,()fx在区间1,3上是增函数,对任意划分1=𝑥0<𝑥1<𝑥2<⋯<𝑥2022=3均有𝑓(𝑥0)<𝑓(𝑥1)<𝑓(𝑥2)<⋯

<𝑓(𝑥2022)|𝑓(𝑥1)−𝑓(𝑥0)|+|𝑓(𝑥2)−𝑓(𝑥1)|+|𝑓(𝑥3)−𝑓(𝑥2)|+⋯+|𝑓(𝑥2022)−𝑓(𝑥2021)|=𝑓(𝑥1)−𝑓(𝑥0)+𝑓(𝑥2)−𝑓(𝑥1)+𝑓(𝑥3)−

𝑓(𝑥2)+⋯𝑓(𝑥2022)−𝑓(𝑥2021)=𝑓(𝑥2022)−𝑓(𝑥0)=𝑓(3)−𝑓(1)=1所以此和式为定值1.……………12分获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
相关资源
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?