【文档说明】数学(全国卷理科02)(参考答案).docx,共(7)页,328.588 KB,由管理员店铺上传
转载请保留链接:https://www.doc5u.com/view-799ce4558ea5b42cb9f4ed63622ecb88.html
以下为本文档部分文字说明:
学科网(北京)股份有限公司2024年高考押题预测卷【全国卷02】理科数学·全解全析第一部分(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.123456789101112CABDBABACBDB二、填空题:本大
题共4小题,每小题5分,共20分13.22nn+−14.215.5,127−16.34;25π4.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23
题为选考题,考生根据要求作答.(一)必考题:共60分.17.【详解】(1)解:因为coscos4CAcba=−,由正弦定理得coscossin4sinsinCACBA=−,...................
..............1分可得4sincossincoscossinBCACAC−=,即4sincossincoscossinsin()sinBCACACACB=+=+=,..........................................
..........................3分因为(0,π)B,可得sin0B,所以4cos1C=,即1cos4C=,所以215sin1cos4CC=−=...................................
.....................................................................................6分(2)解:由(1)知15sin4C=,因为若ABC的面积为152,可
得115sin22abC=,即11515242ab=,解得4ab=,..................8分又因为263abc+=,由余弦定理得222212cos()224cababCababab=+−=+−−22526()()1023a
babc=+−=−,整理得26c=,解得6c=,..........................................................................................
..............................10分所以26643ab+==,所以ABC的周长为46abc++=+..................................................
.......................................................12分18.【详解】(1)依题意可得的可能取值为0、1、2、3,学科网(北京)股份有限公司所以()3211011143224P==
−−−=,()321321321111111114324324324P==−−+−−+−−=,()321321
32111211143243243224P==−+−+−=,()321134324P===,所以随机变量的分布列为0123P1241411241
4.................................................................................................................................................
..........................3分所以()1111123012324424412E=+++=......................................................
.....................................4分又2班的总得分满足23,3B,则()2323E==................................
..........................................6分(2)设“2+=”为事件A,“2班比1班得分高”为事件B,............................................................
.....7分则()223213333122122112C1C1C12433433243PA=−+−+−592427=,...............
...............................................................................................................................
.........9分()2231221C1243354PAB=−=,所以()()()1242712545959PABPBAPA===,......................................................
.........................................11分所以2班比1班得分高的概率为1259..............................................................
.............................................12分19.【详解】(1)当2=时,得12BFFB=uuuuruuur,又12ADDA=uuuuruuur,12BEEC=uuuruuur,所以//DFAB,//EFBC,..
.........................................................................................................................2分DF平面ABC,AB平面ABC,
//DF平面ABC,同理得//EF平面ABC,........................................................................................
.......................................4分因为,EFDE是平面DEF内两条相交直线,所以平面//DEF平面ABC........................................................
....................................................................5分学科网(北京)股份有限公司(2)因为1AA,1BB为圆柱1OO的母线,所以1AA垂直平面ABC,又点C在底面圆周上,且BC过底面圆心O,所以A
BAC⊥,所以1,,ABACAA两两互相垂直.以点A为坐标原点,1,,ABACAA分别为,,xyz轴,建立如图空间直角坐标系,.................................................................
..........................................................................6分设1AC=,则()0,0,0A,()1,0,0B,()0,1,0C,()10,
0,2A,()11,0,2B,所以()1,0,0AB=,()10,0,2BB=,()111,0,0AB=,()10,1,2AC=−,.......................................................7分因为()10B
FFB=,所以1120,0,11BFBB==++,则()221,0,00,0,1,0,11AFABBF=+=+=++,..................................
.................................................8分设平面11ABC的一个法向量为(),,nxyz=,则11100nABnAC==,即020xyz=−=,令1z=,解得0x=,2
y=,所以()0,2,1n=,...........................................................................................................
................................10分所以AF与平面11ABC所成角的正弦值为221cos,2151AFnAFnAFn+==++,22101102151+=
++,解得1=或3−,..........................................................................................11分0,1=....
.....................................................................................................
....................................12分20.【详解】(1)因为动圆E经过定点(1,0)D,且与直线=1x−相切,即动圆圆心E到点(1,0)D的距离与到直线=1x−的距离相等,...............
..................................................1分学科网(北京)股份有限公司又点(1,0)D不在直线=1x−上,由抛物线的定义可知动圆圆心E是以(1,0)D为焦点,直线=1x−为准线的抛物线,..........................
....3分所以动圆圆心E的轨迹为24yx=.................................................................................................
.................4分(2)依题意设直线1l方程为(1)2ykx=−+()0k,直线1l,2l的斜率存在,且倾斜角互补,2l的方程为(1)2ykx=−−+.联立方程组2(1)24ykxyx=−+=,消元得2222(244)(2)0kxkkxk−−++−
=,()()()22222Δ244421610kkkkk=−+−−=−,.......................................................................................6分因为此方程的一个根为1,设()11
,Axy,()22,Bxy,则22122(2)44kkkxkk−−+==,同理可得22244kkxk++=,...............................................
...............................8分212228kxxk++=,12288kxxkk−−−==.2121212288[(1)2][(1)2]()22kyykxkxkxxkkkk+−=−+−−−+=+−=−=.12121AByykxx−==−−,..
...........................................................................................................................
...........10分设直线AB的倾斜角为,则tan1=−,又)0,π,所以3π4=,....................................................11分直线AB的斜率为定值1−,倾斜角为定值3π4....
.................................................................................12分21.【详解】(1)因为()e2(0)xfxxaxa=−,所以()()1e2xfxxa=+−,则()12e2fa=−,又(
)1e2fa=−,所以函数()fx在1x=处的切线方程为()()e22e21yaax−+=−−.........................................................2分由题意,显然ea,令0x=得ey=−,令0
y=得e2e2xa=−,学科网(北京)股份有限公司所以函数()fx在1x=处的切线与坐标轴围成的三角形的面积为1eee22e22Sa=−=−,所以2e2ea−=,解得e2a=或3e2a=.................................................
.......................................................4分(2)由(1)知()()1e2xfxxa=+−,令()()()1e2(0)xgxfxxaa==+−,所以()()2e
xgxx=+,当<2x−时,()()0,gxgx在(),2−−上单调递减,当2x−时,()0gx,()gx在()2,−+上单调递增.............................................
.................................6分因为0a,所以当2x−时,()()1e20xgxxa=+−,又()()2221e221210,agaaaaa=+−+−=所以()gx在()2,−+上必存在唯一零点0x,使得()00gx=..........
.........................................................8分当0xx时,()0gx,即()()0,fxfx在()0,x−上单调递减,当0xx时,()0gx,即()()0,fxfx在()0,x
+上单调递增.所以()fx在0xx=处取得最小值,即()0min000()e2xfxfxxax==−,且()00fx=,即()0021exax=+,所以()00002min000000()e2e1eeexxxxf
xxaxxxxx=−=−+=−=−...............................................................10分设()2e(2)xhxxx=−−,所以()()2exhxxx=−+,当()2,0x−
时,()()0,hxhx单调递增,()()3224e2eeehxh−−−==−,当)0,x+时,()0hx,()hx单调递减,()()00hxh=,又()1eh=−,所以函数()hx在()2,−+上存在唯一的1x=,使得2eexx−=−成立
,所以01x=,所以()0021e2exax=+=,即ea=.......................................................................................12分(二)选考题:共10分.请考生在22、23题中任选一
题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.【详解】(1)因为曲线1C的极坐标方程为2sin=,所以22sin=,学科网(北京)股份有限公司由222cossinxyxy
===+,得曲线1C的直角坐标方程为2220xyy+−=;由曲线2C的参数方程为3cos3sinxmy=+=(为参数),又22cossin1+=,得()223xmy−+=,.............................
..........................................................................................................
.2分因为cossinxy==,所以()()22cossin3m−+=,即222cos3mm−+=,即曲线2C的极坐标方程为222cos3mm−+=.又点π6,4A在曲线2C上,所以26233mm−+=,解得3m=,所以曲线2C的极坐标方程为23c
os=;...............................................................................................4分(2)因为点π6,4A,则π6cos34π6sin34xy==
==,即点A的直角坐标为()3,3,................................5分由(1)得曲线2C的直角坐标方程为()2233xy−+=,联立()223033xyxy−=−+=,解得00xy==或33232xy==,所
以333,22Q,联立223020xyxyy−=+−=,解得00yx==或1232yx==,所以31,22P,.......................
...................................8分则223133322222PQ=−+−=,点()3,3A到直线:30lxy−=的距离3333213d−−==+,..............................
.................................9分所以13322APQSPQd−==................................................................................................
......................10分选修4-5:不等式选讲23.【详解】(1)当2a=时,()14fx可化为2214xx+−.................................................................1分学科网(北京)股
份有限公司当0x时,02(2)14xxx−−−,解得1003x−;当02x时,022(2)14xxx−−,解得02x;当2x时,22(2)14xxx+−,解得26x.............................
.................................................................4分故当2a=时,不等式()14fx的解集为10,63−..
...................................................................................5分(2)因为22816(4)4xxxx++=+=+,所以()2816fxxx++等价于24xxa−+−.........
.............................................................................7分因为()222xxaxxaa−+−−−−
=−,当且仅当(2)()0xxa−−时取等号,..................................8分所以2xxa−+−的最小值为2a−,所以24a−,解得2a−或6a,故a的取值范围是(),26,−−
+...........................................................................................................10分