【文档说明】天津市第三中学2021届高三下学期2月月考数学试题 答案.doc,共(2)页,587.000 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-75f426eed3e916f5c1127f876e362d9b.html
以下为本文档部分文字说明:
第三中学2020~2021学年度第二学期高三年级数学阶段性测试(2021.2)参考答案一.选择题1.C2.A3.B4.C5.C6.B7.A8.B9.A二.解答题10.511.32,1012.6013.相离
14.-lg215.13916.(Ⅰ)证明:连接AC,交BD于O,连接OP,底面ABCD是正方形,O是AC的中点,点P为1CC的中点,1//OPAC,1AC平面PBD,OP平面PBD,1//AC平面PBD.(Ⅱ)以D为原点,DA
为x轴,DC为y轴,1DD为z轴,建立空间直角坐标系,133AAAB==,113PCCC=,1(1A,0,3),(0P,1,2),(1B,1,0),(0D,0,0),1(1AP=−,1,1)−,(1DB=,1,0),(0DP=,1,2),设平面PBD的法向量(nx=,y,
)z,则020nDBxynDPyz=+==+=,取2x=,得(2n=,2−,1),设直线1AP与平面PBD所成角为,则直线1AP与平面PBD所成角的正弦值为:11||553sin9||||39APnAPn===.
(Ⅲ)设PCt=,则(0P,1,)t,(0DP=,1,)t,(1DB=,1,0),平面PDC的法向量(1p=,0,0),设平面PBD的法向量(ma=,b,)c,则00mDPbtcmDBab=+==+=,取1a=,得(1m=,1−,1)t,二面角BPDC−−的余弦值为23,2||12|
cos,|||||312mpmpmpt===+,解得2t=,或2t=−(舍),PC的长为2.17.(Ⅰ)由等比数列{}na满足3210aa−=,123125aaa=,可得23125a=,即25a=,315a=,则等比数列{}na的公比
为3,所以253nna−=,5(13)53(31)136nnnS−==−−;(Ⅱ)(ⅰ)由11b=,且*32111()23nnbbbbbnNn+++++=−,可得121bb=−,即22b=,当2n…时,121121nnbbbbn−+++=−−,又1211121nnnbbbb
bnn−+++++=−−,两式相减可得11(1)nnnbbbn+=−−−,化为12112nnbbbnn+====+,所以nbn=,对1n=也成立,nbn=,*nN;(ⅱ)21112335211nniinniMababababab−−===++++2515
353553(21)3nn−=++++−,221355353553(21)nnMn−=++++−,上面两式相减可得2215210(1333)53(21)3nnnMn−−−=+++++−−115131053(2
1)313nnn−−−=+−−−,化简可得121155(1)33nniiiabn−−==+−.18.(1)()()()()()212121xxfxxeaxxea=+−+=+−.(i)当0a时,0xea−,当1,2x−−时,()0fx
;当1,2x−+时,()0fx;所以()fx在1,2−−单调递减,在1,2−+单调递增.(ii)当0a时,由()0fx=得12x=−或ln.xa=12ae−=时,()()12210xfxxee−=+−
,所以()fx在R上单调递增.当120ae−时,1ln2a−.当()1,ln,2xa−−+时,()0fx;当1ln,2xa−时,()0fx;所以()fx在()1,ln,,2a−−+单调递增,在1ln,2a−单调递减.当
12ae−时,1ln2a−.当()1,ln,2xa−−+时,()0fx;当1,ln2xa−时,()0fx;所以()fx在()1,,ln,2a−−+单调递增,在1,ln2a−单调递减.(2)由题意,对任意的
xR,恒有()()2110xxeax−−−,即不等式()()121xaxxe−−成立.①当1x=时,显然成立.②当1x时,不等式化为()21.1xxeax−−令()()()2111xxehxxx−=−,有
()()()22231xxxehxx−=−.当31,2x时,()0hx,()hx单调递减;当3,2x+时,()0hx,()hx单调递增,所以当32x=时,()hx取极小值32342he=.于是324ae.当1x
时,不等式转化为()21.1xxeax−−令()()()2111xxexxx−=−,有()()()22231xxxexx−=−.当(),0x−时,()0x,()x单调递增;当()0,1x时,()0x,()x
单调递减,所以当0x=时,()x取极大值()01=.此时1a.综上,a的取值范围是321,4e.