2021高考数学(理)集训8 高考中的数学文化题 高考中的创新应用题

DOC
  • 阅读 1 次
  • 下载 0 次
  • 页数 20 页
  • 大小 2.038 MB
  • 2024-10-14 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
2021高考数学(理)集训8 高考中的数学文化题 高考中的创新应用题
可在后台配置第一页与第二页中间广告代码
2021高考数学(理)集训8 高考中的数学文化题 高考中的创新应用题
可在后台配置第二页与第三页中间广告代码
2021高考数学(理)集训8 高考中的数学文化题 高考中的创新应用题
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的17 已有1人购买 付费阅读2.40 元
/ 20
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】2021高考数学(理)集训8 高考中的数学文化题 高考中的创新应用题 .docx,共(20)页,2.038 MB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-6ae422452ec7ea9c420343443b8fe1d2.html

以下为本文档部分文字说明:

专题限时集训(八)高考中的数学文化题高考中的创新应用题1.(2015·全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长

为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛B[设圆锥的底面半径为r,则π2r=8,解得r=16π,故米堆的体积为14×13

×π×16π2×5≈3209,∵1斛米的体积约为1.62立方,∴3209÷1.62≈22,故选B.]2.(2016·全国卷Ⅱ)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2

,n=2,依次输入的a为2,2,5,则输出的s=()A.7B.12C.17D.34C[∵输入的x=2,n=2,当输入的a为2时,s=2,k=1,不满足退出循环的条件;当再次输入的a为2时,s=6,k=2,不满足退出循

环的条件;当输入的a为5时,s=17,k=3,满足退出循环的条件;故输出的s值为17,故选C.]3.(2015·全国卷Ⅱ)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,200

8年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关D[从图中明显看出2008年二氧化硫排放量

比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;2004-2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选D

.]4.(2019·全国卷Ⅰ)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-125-12≈0.618,称为黄金分割比例,著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12.若某人满足上述两个黄金分割比例,且腿长为

105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cmB.175cmC.185cmD.190cmB[头顶至脖子下端的长度为26cm,说明头顶到咽喉的长度小于26cm,由头顶至咽喉的长度与咽喉至肚脐的长度之比是5-1

2≈0.618,可得咽喉至肚脐的长度小于260.618≈42cm,由头顶至肚脐的长度与肚脐至足底的长度之比是5-12,可得肚脐至足底的长度小于42+260.618≈110,即有该人的身高小于110+68=1

78cm,又肚脐至足底的长度大于105cm,可得头顶至肚脐的长度大于105×0.618≈65cm,即该人的身高大于65+105=170cm,故选B.]5.(2018·上海高考)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.

设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA1为底面矩形的一边,则这样的阳马的个数是()A.4B.8C.12D.16D[根据正六边形的性质,则D1-A1ABB1,D1-A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×4=8,当A1ACC1为底

面矩形,有4个满足题意,当A1AEE1为底面矩形,有4个满足题意,故有8+4+4=16,故选D.]6.(2019·北京高考)数学中有许多形状优美、寓意美好的曲线,曲线C:x2+y2=1+|x|y就是其中之一(如图).给出下列三个结论:①曲线C恰好经过6个整点(即横

、纵坐标均为整数的点);②曲线C上任意一点到原点的距离都不超过2;③曲线C所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是()A.①B.②C.①②D.①②③C[将x换成-x方程不变,所以图形关于y轴对称,

当x=0时,代入得y2=1,∴y=±1,即曲线经过(0,1),(0,-1);当x>0时,方程变为y2-xy+x2-1=0,所以Δ=x2-4(x2-1)≥0,解得x∈0,233,所以x只能取整数1,当x=1时,y2-y=0,解得y=0或y

=1,即曲线经过(1,0),(1,1),根据对称性可得曲线还经过(-1,0),(-1,1),故曲线一共经过6个整点,故①正确.当x>0时,由x2+y2=1+xy得x2+y2-1=xy≤x2+y22,(当x=y时取等),∴x2+y2≤2,∴x2+y2≤2,即曲线C上y轴右边的点到原点的距离不超过2

,根据对称性可得:曲线C上任意一点到原点的距离都不超过2,故②正确.在x轴上方图形面积大于矩形面积=1×2=2,x轴下方的面积大于等腰直角三角形的面积=12×2×1=1,因此曲线C所围成的“心形”区域的面积大于2+1=3,故③错

误.故选C.]7.(2019·全国卷Ⅱ)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“

鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行.L2点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,L2点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:M1(R+r)2+M2r2=(R+

r)M1R3.设α=rR.由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r的近似值为()A.M2M1RB.M22M1RC.33M2M1RD.3M23M1RD[∵α=rR.∴r=αR,r满足方程:M1(R+r)2+M2r2=

(R+r)M1R3.∴M2M1=3α3+3α4+α5(1+α)2≈3α3,∴r=αR=3M23M1R.故选D.]8.(2020·新高考全国卷Ⅰ)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地

球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平

面所成角为()A.20°B.40°C.50°D.90°B[过球心O、点A以及晷针的轴截面如图所示,其中CD为晷面,GF为晷针所在直线,EF为点A处的水平面,GF⊥CD,CD∥OB,∠AOB=40°,∠OAE=∠OAF=90°,所以∠GFA=∠CAO=

∠AOB=40°.故选B.]9.(2020·全国卷Ⅱ)如图,将钢琴上的12个键依次记为a1,a2,…,a12,设1≤i<j<k≤12.若k-j=3且j-i=4,则称ai,aj,ak为原位大三和弦;若k-j=4且j-i=3,则称ai

,aj,ak为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为()A.5B.8C.10D.15C[法一:由题意,知ai,aj,ak构成原位大三和弦时,j=k-3,i=j-4,所以ai,aj,ak为原位大三和弦的情况有:k=12,j=9,i=5;k=11

,j=8,i=4;k=10,j=7,i=3;k=9,j=6,i=2;k=8,j=5,i=1共5种.ai,aj,ak构成原位小三和弦时,j=k-4,i=j-3,所以ai,aj,ak为原位小三和弦的情况有:k=12,j=8,i=5;k=11,j=7,i=4;k=10,j

=6,i=3;k=9,j=5,i=2;k=8,j=4,i=1共5种.所以用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为10,故选C.法二:由题意,知当ai,aj,ak为原位大三和弦时,k-j=3且j-i=4

,又1≤i<j<k≤12,所以5≤j≤9,所以这12个键可以构成的原位大三和弦的个数为5.当ai,aj,ak为原位小三和弦时,k-j=4且j-i=3,又1≤i<j<k≤12,所以4≤j≤8,所以这12个键可以构成的原位小三和弦的个数为5.所以用这12个键可以构成的原位大三和弦与原位小三和弦

的个数之和为10,故选C.]10.(2017·浙江高考)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年.“割圆术”的第一步是计算单位圆内

接正六边形的面积S6,S6=________.332[如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=6×12×1×1×sin60°=332.]1.(2020·深圳二模)棣莫弗公式(co

sx+isinx)n=cosnx+isinnx(i为虚数单位)是由法国数学家棣莫弗(1667-1754)发现的,根据棣莫弗公式可知,复数cosπ5+isinπ56在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限C[由(cosx+isinx)n=cos

nx+isinnx,得cosπ5+isinπ56=cos6π5+isin6π5=-cosπ5-isinπ5,∴复数cosπ5+isinπ56在复平面内所对应的点的坐标为-cosπ5,-sinπ5,位于第三象限.故选C.]2.(2020·淄

博期中)“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而四方称之为“中国剩余理”.“中国剩余定理”讲的是一个关于整

除的问题,现有这样一个整除问题:将1至2019中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{an},则此数列的项数为()A.134B.135C.136D.137B[由能被3除余1且被5除余1的数就是能被15整除余1的数,故an=15n-14.由an=15n-14≤201

9,得n≤135,故此数列的项数为135.故选B.]3.(2020·绵阳模拟)数学与建筑的结合造就建筑艺术品,2018年南非双曲线大教堂面世便惊艳世界,如图.若将此大教堂外形弧线的一段近似看成焦点在y轴上的双曲线y2a2-x2b2=1(a>0,b>0)上支

的一部分,且上焦点到上顶点的距离为2,到渐近线距离为22,则此双曲线的离心率为()A.2B.3C.22D.23B[双曲线y2a2-x2b2=1(a>0,b>0)的上焦点到上顶点的距离为2,到渐近线距离为22,可得:c-a=2|bc|a2+b2

=22c2=a2+b2,解得a=1,c=3,b=22,所以双曲线的离心率为:e=ca=3.故选B.]4.(2020·济南一模)加强体育锻炼是青少年生活学习中非常重要的组成部分.某学生做引体向上运动,处于如图所示的平衡状态时,若两只胳膊的夹角为60°,每只胳膊的拉力大小均为40

0N,则该学生的体重(单位:kg)约为()(参考数据:取重力加速度大小为g=10m/s2,3≈1.732)A.63B.69C.75D.81B[由题意知,F1=F2=400,夹角θ=60°,所以G+F1+F2=0,即G=-(F1+F2);所

以G2=(F1+F2)2=4002+2×400×400×cos60°+4002=3×4002;即|G|=4003(N),所以学生的体重为4003÷10=403kg.即该学生的体重(单位:kg)约为403=40×1.732≈69(kg),故选B.]5.(20

20·广州一模)陀螺是中国民间最早的娱乐工具,也称陀罗.如图,网格纸上小正方形的边长为1,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为()A.(7+22)πB.(10+22)πC.(10+42)πD.(11+42)πC[由题意可知几何体的直观图如图,上部是

底面半径为1,高为3的圆柱,下部是底面半径为2,高为2的圆锥,几何体的表面积为:4π+12×4π×22+2π×3=(10+42)π,故选C.]6.(2020·广州模拟)某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为e,设地球半径为

R,该卫星近地点离地面的距离为r,则该卫星远地点离地面的距离为()A.1+e1-er+2e1-eRB.1+e1-er+e1-eRC.1-e1+er+2e1+eRD.1-e1+er+e1+eRA[椭圆的离心率:e=ca∈(0,1),(c为半焦距;a为长半轴)设卫星

近地点,远地点离地面距离分别为m,n,由题意,结合图形可知,a-c=r+R,远地点离地面的距离为:n=a+c-R,m=a-c-R,a=r+R1-e,c=(r+R)e1-e,所以远地点离地面的距离为:n=a+c-R=r+R1-e+e(r+R)1-e-R=1+

e1-er+2e1-eR.故选A.]7.(2020·咸阳二模)“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,旨在积极发展我国与沿线国家经济合作关系,共同打造政治互信、经济融合、文化包容的命运共同体.自2015年以来,“一带一

路”建设成果显著.下图是2015~2019年,我国对“一带一路”沿线国家进出口情况统计图,下列描述错误的是()A.这五年,出口总额之和比进口总额之和大B.这五年,2015年出口额最少C.这五年,2019年进口增速最快D.这五年,出口增速前四年逐年下降D[对于A,这五年,出口总额之和

比进口总额之和大,故A正确;对于B,2015年出口额最少,故B正确;对于C,这五年,2019年进口增速最快,故C正确;对于D,根据出口线斜率可知,这五年,出口增速前三年先升后降,第四年后增速开始增加,故D错误.故选D.]8.(2020·商丘模拟)历史上有不少数

学家都对圆周率作过研究,第一个用科学方法寻求圆周率数值的人是阿基米德,他用圆内接和外切正多边形的周长确定圆周长的上下界,开创了圆周率计算的几何方法,而中国数学家刘徽只用圆内接正多边形就求得π的近似值,他的方法被后人称为割圆术.近代无穷乘积式、无穷连分数、无穷级数等

各种π值的表达式纷纷出现,使得π值的计算精度也迅速增加.华理斯在1655年求出一个公式:π2=2×2×4×4×6×6×…1×3×3×5×5×7×…,根据该公式绘制出了估计圆周率π的近似值的程序框图,如下图所示,执行该程序框图,已知输出的T>2.8,若判断框内填入的条件为k

≥m?,则正整数m的最小值是()A.2B.3C.4D.5B[初始:k=1,T=2,第一次循环:T=2×21×23=83<2.8,k=2,继续循环;第二次循环:T=83×43×45=12845>2.8,k=3,此时T>2.8,满足条件,结束循环,所以判

断框内填入的条件可以是k≥3?,所以正整数m的最小值是3,故选B.]9.(2020·郴州模拟)达芬奇的经典之作《蒙娜丽莎》举世闻名.如图,画中女子神秘的微笑,数百年来让无数观赏者入迷.某业余爱好者对《蒙娜丽莎》的缩小影像作品进行了粗略测绘

,将画中女子的嘴唇近似看作一个圆弧,在嘴角A,C处作圆弧的切线,两条切线交于B点,测得如下数据:AB=6cm,BC=6cm,AC=10.392cm(其中32≈0.866).根据测量得到的结果推算:将《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角大约等于()A.π3B.π4C.π

2D.2π3A[∵AB=6cm,BC=6cm,AC=10.392cm(其中32≈0.866).设∠ABC=2θ.∴sinθ=10.39226=0.866≈32,∵由题意θ必为锐角,可得θ≈π3,设《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角为α.则α+2θ=π,∴

α=π-2π3=π3.故选A.]10.(2020·福建模拟)上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图

2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图.图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角

近1万年持续减小,其正切值及对应的年代如表:黄赤交角23°41′23°57′24°13′24°28′24°44′正切值0.4390.4440.4500.4550.461年代公元元年公元前2000公元前4000公元前6000公元前

8000年年年年根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是()A.公元前2000年到公元元年B.公元前4000年到公元前2000年C.公元前6000年到公元前4000年D.早于公元前6000年D[由题意,可设冬至日光与垂直线夹角为α,春

秋分日光与垂直线夹角为β,则α-β即为冬至日光与春秋分日光的夹角,即黄赤交角,将图3近似画出如下平面几何图形:则tanα=1610=1.6,tanβ=16-9.410=0.66,tan(α-β)=tanα-tanβ1+ta

nα·tanβ=1.6-0.661+1.6×0.66≈0.457.∵0.455<0.457<0.461,∴估计该骨笛的大致年代早于公元前6000年.故选D.]11.(2020·长沙模拟)设函数f(x)=sin(ωx+φ)ω>0,-π2<φ<π2,给出以下四个论断:

①它的图象关于直线x=π12对称;②它的图象关于点π3,0对称;③它的最小正周期是π;④在区间-π6,0上是增函数.以其中两个论断作为条件,余下论断作为结论,一个正确的命题是()条件________,结论________.A.①②⇒③

④B.③④⇒①②C.②④⇒①③D.①③⇒②④D[①③⇒②④由③知ω=2,∴f(x)=sin(2x+φ).又由①2×π12+φ=kπ+π2,得φ=kπ+π3,k∈Z.又∵-π2<φ<π2,∴φ=π3,∴f(x)=sin2x+

π3.∵fπ3=sin2×π3+π3=0,∴它的图象关于点π3,0对称.∵2kπ-π2≤2x+π3≤2kπ+π2,∴kπ-5π12≤x≤kπ+π12,k∈Z.∵-π6,0⊆-5π12,π12,∴f(x)在区间

-π6,0上是增函数.故选D.]12.(2020·江岸区模拟)学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为在圆锥底部挖去一个正方体后的剩余部分(正方体四个顶点在圆锥母线上,四个顶点在圆锥底面上),圆锥底面直径为102cm,高为10cm.打印

所用原料密度为1g/cm3,不考虑打印损耗,制作该模型所需原料的质量为(取π=3.14,精确到0.1)()A.609.4gB.447.3gC.398.3gD.357.3gC[如图,是几何体的轴截面,设正方体的棱长为a,则

22a52=10-a10,解得a=5,∴该模型的体积为:V=13π×(52)2×10-53=500π3-125≈398.33(cm3).∴制作该模型所需原料的质量为398.33×1≈398.3(g).故选C.]13.(2020·虹口区一模)已知m、n是平面α外的两条不同

直线,给出三个论断:①m⊥n;②n∥α;③m⊥α;以其中两个论断作为条件,写出一个正确的命题(论断用序号表示):________.若②③,则①[已知m、n是平面α外的两条不同直线,给出三个论断:①m⊥n;②n∥α;③m⊥α;当m⊥α时,m必垂直于平面α内的任意一条直线,由于n∥α,所以m

⊥n,如图所示.]14.(2020·乌鲁木齐一模)造纸术是我国古代四大发明之一.纸张的规格是纸张制成之后,经过修整切边,裁成一定的尺寸.现在我国采用国际标准,规定以A0,A1,…,A10;B0,B1,…,B10等标记来表示纸张的幅面规格.复印纸幅面规格只采用A系列和B系

列,其中A系列的幅面规格为:①A0规格的纸张幅宽(以x表示)和长度(以y表示)的比例关系为x∶y=1∶2,②将A0纸张沿长度方向对开成两等份,便成为A1规格,A1纸张沿长度方向对开成两等份,便成为A2规格,…,如此对开至A8规格,现有A0,A1,A2,A3,…,A8纸

各一张,若A4纸的面积为624cm2,这九张纸的面积之和等于________(cm2).19929[可设Ai纸张的面积分别为Si,i=0,1,…,8,则{Si}为等比数列,公比q=12,∵S4=624=S0×124,解

得S0=9984.可得这9张纸的面积之和为99841-1291-12=19929cm2.]15.(2020·济南模拟)如图所示,边长为1的正三角形ABC中,点M,N分别在线段AB,AC上,将△AMN沿线段MN进行翻折,得到如图

所示的图形,翻折后的点A在线段BC上,则线段AM的最小值为________.23-3[设AM=x,∠AMN=α,则BM=1-x,∠AMB=180°-2α,∴∠BAM=2α-60°,在△ABM中,由正弦定理可得AMsi

n∠ABM=BMsin∠BAM,即x32=1-xsin(2α-60°),∴x=3232+sin(2α-60°),∴当2α-60°=90°,即α=75°时,x取得最小值3232+1=23-3.]16.[一题两空](2020·赤峰模拟)现代

足球运动是世界上开展得最广泛、影响最大的运动项目,有人称它为“世界第一运动”.早在2000多年前的春秋战国时代,就有了一种球类游戏“蹴鞠”,后来经过阿拉伯人传到欧洲,发展成现代足球.1863年10月26日,英国人在伦敦成立了世界上第一

个足球运动组织——英国足球协会,并统一了足球规则.人们称这一天是现代足球的诞生日.如图所示,足球表面是由若干黑色正五边形和白色正六边形皮围成的,我们把这些正五边形和正六边形都称为足球的面,任何相邻两个面的

公共边叫做足球的棱.已知足球表面中的正六边形的面为20个,则该足球表面中的正五边形的面为________个,该足球表面的棱为________条.1290[简单多面体的顶点数V,面数F与棱数E间有关系式V+F-E=2,设该足球表面中的正五边形的面为x个

,正六边形的面为y个,则F=x+y,V=5x,E=5x+32y,∴5x+(x+y)-5x+32y=2,化简,得2x-y=4,正五边形的边有两种算法:单从正五边形看,这x个正五边形共有5x条边,从正六边形的角度看,每个正六

边形有3条边是正五边形的边,y个正六边形有6y条边,其中正五边形的边的总数为:6y×36=3y,∴5x=3y.联立2x-y=45x=3y,解得x=12,y=20,∴该足球表面中的正五边形的面为12个,该足球表面的棱为E=5x+32y=9

0个.]获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
相关资源
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?