2024年新高考数学一轮复习题型归纳与达标检测 第18讲 导数的应用——利用导数研究不等式恒成立(能成立)问题(达标检测)(原卷版)

DOC
  • 阅读 3 次
  • 下载 0 次
  • 页数 4 页
  • 大小 15.275 KB
  • 2024-10-15 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
2024年新高考数学一轮复习题型归纳与达标检测 第18讲 导数的应用——利用导数研究不等式恒成立(能成立)问题(达标检测)(原卷版)
可在后台配置第一页与第二页中间广告代码
2024年新高考数学一轮复习题型归纳与达标检测 第18讲 导数的应用——利用导数研究不等式恒成立(能成立)问题(达标检测)(原卷版)
可在后台配置第二页与第三页中间广告代码
2024年新高考数学一轮复习题型归纳与达标检测 第18讲 导数的应用——利用导数研究不等式恒成立(能成立)问题(达标检测)(原卷版)
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的1 已有3人购买 付费阅读1.60 元
/ 4
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
文本内容

【文档说明】2024年新高考数学一轮复习题型归纳与达标检测 第18讲 导数的应用——利用导数研究不等式恒成立(能成立)问题(达标检测)(原卷版).docx,共(4)页,15.275 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-595c62de06a37ece4e2bd541bae513a6.html

以下为本文档部分文字说明:

《导数的应用——利用导数研究不等式恒成立(能成立)问题》达标检测[A组]—应知应会1.已知函数f(x)=x+4x,g(x)=2x+a,若∀x1∈12,1,∃x2∈[2,3],使得f(x1)≥g(x2),则实数a的取值范围是()A.a≤1B.a≥1C.a≤2D.a≥22.(202

0·吉林白山联考)设函数f(x)=exx+3x-3-ax,若不等式f(x)≤0有正实数解,则实数a的最小值为________.3.(2020·西安质检)已知函数f(x)=lnx,g(x)=x-1.(1)求函数y=f(x)的图象在x=1处的切线方程;(2)若不

等式f(x)≤ag(x)对任意的x∈(1,+∞)均成立,求实数a的取值范围.4.已知函数f(x)=ax-ex(a∈R),g(x)=lnxx.(1)求函数f(x)的单调区间;(2)∃x0∈(0,+∞),使不等式f(x)≤g

(x)-ex成立,求a的取值范围.5.(2020·河南郑州质检)已知函数f(x)=lnx-a(x+1),a∈R,在(1,f(1))处的切线与x轴平行.(1)求f(x)的单调区间;(2)若存在x0>1,当x∈(1,x0)时,恒有f(x)-x22+2x+12>k(x-1)成立

,求k的取值范围.6.设f(x)=xex,g(x)=12x2+x.(1)令F(x)=f(x)+g(x),求F(x)的最小值;(2)若任意x1,x2∈[-1,+∞),且x1>x2,有m[f(x1)-f(

x2)]>g(x1)-g(x2)恒成立,求实数m的取值范围.[B组]—强基必备1.已知函数f(x)=ax+x2-xlna(a>0,a≠1).(1)求函数f(x)的极小值;(2)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1(e是自然对

数的底数),求实数a的取值范围.

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?