高中数学人教版必修2教案:1.1.2简单组合体的结构特征 (系列二)含答案【高考】

DOC
  • 阅读 0 次
  • 下载 0 次
  • 页数 7 页
  • 大小 239.500 KB
  • 2024-11-06 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
高中数学人教版必修2教案:1.1.2简单组合体的结构特征 (系列二)含答案【高考】
可在后台配置第一页与第二页中间广告代码
高中数学人教版必修2教案:1.1.2简单组合体的结构特征 (系列二)含答案【高考】
可在后台配置第二页与第三页中间广告代码
高中数学人教版必修2教案:1.1.2简单组合体的结构特征 (系列二)含答案【高考】
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的3 已有0人购买 付费阅读2.40 元
/ 7
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】高中数学人教版必修2教案:1.1.2简单组合体的结构特征 (系列二)含答案【高考】.doc,共(7)页,239.500 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-57b910b2d789385bc4efefcee217f997.html

以下为本文档部分文字说明:

11.1.2简单组合体的结构特征一、教材分析立体几何是研究现实世界中物体的形状、大小与位置关系的学科,只有把我们周围的物体形状正确迅速分解开,才能清醒地认识几何学,为后续学习打下坚实的基础.简单几何体(柱体、锥体、台体和球)是构成简单组合体的基本元素.本

节教材主要是为了让学生在学习了柱、锥、台、球的基础上,运用它们的结构特征来描述简单组合体的结构特征.二、教学目标1.知识与技能(1)理解由柱、锥、台、球组成的简单组合体的结构特征.(2)能运用简单组合体的结构特征描述现实生活中的实际模型.

2.过程与方法让学生通过下观感觉空间物体,认识简单的组合体的结构特征,归纳简单组合体的基本构成形式.3.情感态度与价值观培养学生的空间想象能力,培养学习教学应用意识.三、重点难点描述简单组合体的结构特征.四、课时安排1课时五、教学设计(一)导

入新课思路1.在我们的生活中,酒瓶的形状是圆柱吗?我们的教学楼的形状是柱体吗?钢笔、圆珠笔呢?这些物体都不是简单几何体,那么如何描述它们的结构特征呢?教师指出课题:简单几何体的结构特征.思路2.现实世界中的物体表示的几何体,除柱体、锥体、台体和球体等

简单几何体外,还有大量的几何体是由简单几何体组合而成的,这些几何体叫做简单组合体,这节课学习的课题是:简单几何体的结构特征.(二)推进新课、新知探究、提出问题2①请指出下列几何体是由哪些简单几何体组合而成的.图1②观察图1,结合生活

实际经验,简单组合体有几种组合形式?③请你总结长方体与球体能组合成几种不同的组合体.它们之间具有怎样的关系?活动:让学生仔细观察图1,教师适当时候再提示.①略.②图1中的三个组合体分别代表了不同形式.③学生可以分组讨论

,教师可以制作有关模型展示.讨论结果:①由简单几何体组合而成的几何体叫做简单组合体.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成.图1(1)是一个四棱锥和一个长方体拼接成的,这是多面体与多面体的组合体;图1(2)是一个圆台挖去一个

圆锥构成的,这是旋转体与旋转体的组合体;图1(3)是一个球和一个长方体拼接成的,这是旋转体与多面体的组合体.②常见的组合体有三种:多面体与多面体的组合;多面体与旋转体的组合;旋转体与旋转体的组合.其基本形式实质上有两种:一种是由简单几何体拼接而成的简单组合体,如图1(1)和(3)

所示的组合体;另一种是由简单几何体截去或挖去一部分而成的简单组合体,如图1(2)所示的组合体.③常见的球与长方体构成的简单组合体及其结构特征:1°长方体的八个顶点在同一个球面上,此时长方体称为球的内接长方体,球是长方体的外接球,并且长方体的对角线是球的直径;2°一球与正方体的所有棱相切,则正方体

每个面上的对角线长等于球的直径;3°一球与正方体的所有面相切,则正方体的棱长等于球的直径.(二)应用示例思路1例1请描述如图2所示的组合体的结构特征.3图2活动:回顾简单几何体的结构特征,再将各个组合体分解为简单几何体.依据柱、锥、台、球的结构特征依次作出判断.解:图2(1

)是由一个圆锥和一个圆台拼接而成的组合体;图2(2)是由一个长方体截去一个三棱锥后剩下的部分得到的组合体;图2(3)是由一个圆柱挖去一个三棱锥剩下的部分得到的组合体.点评:本题主要考查简单组合体的结构特征和空

间想象能力.变式训练如图3所示,一个圆环绕着同一个平面内过圆心的直线l旋转180°,想象并说出它形成的几何体的结构特征.图3答案:一个大球内部挖去一个同球心且半径较小的球.例2连接正方体的相邻各面的中心(所谓中心是指各面所在正方形的两条对角线的交点),所得的一个几何体是几面体?并画图表示

该几何体.活动:先画出正方体,然后取各个面的中心,并依次连成线观察即可.连接相应点后,得出图形如图4(1),再作出判断.(1)(2)图44解:如图4(1),正方体ABCD—A1B1C1D1,O1、O2、O3、O4、O5、O6分别是各表面的中心.

由点O1、O2、O3、O4、O5、O6组成了一个八面体,而且该八面体共有6个顶点,12条棱.该多面体的图形如图4(2)所示.点评:本题中的八面体,事实上是正八面体——八个面都是全等的正三角形,并且以每个顶点为其一端,都有相同数目的棱.由图还可见,该八面体可看成是

由两个全等的四棱锥经重合底面后而得到的,而且中间一个四边形O2O3O4O5还是正方形,当然其他的如O1O2O6O4等也是正方形.为了增强立体效果,正方体应画得“正”些,而八面体的放置应稍许“倾斜”些,并且“后面的”线,即被前面平面所遮

住的线,如图中的O1O5、O6O5、O5O2、O5O4应画成虚线.变式训练连接上述所得的几何体的相邻各面的中心,试问所得的几何体又是几面体?答案:六面体(正方体).思路2例1已知如图5所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABC

D绕BC所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.图5图6活动:让学生思考AB、AD、DC与旋转轴BC是否垂直,以此确定所得几何体的结构特征.解:如图6所示,旋转所得的几何体是两个圆锥和一个圆柱

拼接成的组合体.点评:本题主要考查空间想象能力以及旋转体、简单组合体.变式训练如图7所示,已知梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.5图7图8答案:如图8所示,旋转

所得的几何体是一个圆柱挖去两个圆锥后剩余部分而成的组合体.例2如图9(1)、(2)所示的两个组合体有什么区别?图9活动:让学生分组讨论和思考,教师及时点拨和评价学生.解:图9(1)所示的组合体是一个长方体上面又放置了一个圆柱,也就是一个长方体和一个圆柱拼接成的组合体;而图9(2)所示的组

合体是一个长方体中挖去了一个圆柱剩余部分构成的组合体.点评:考查空间想象能力和组合体的概念.变式训练如图10,说出下列物体可以近似地看作由哪几种几何体组成?图10答案:图10(1)中的几何体可以看作是由一个圆柱和一个圆锥拼接而成;图10(2)中的螺帽可以近似看作是一个正六棱柱中挖

掉一个圆柱构成的组合体.(三)知能训练1.(2005湖南数学竞赛,9)若干个棱长为2、3、5的长方体,依相同方向拼成棱长为906的正方体,则正方体的一条对角线贯穿的小长方体的个数是()A.64B.66C.68D.70分析:由2、3、5的最小公

倍数为30,由2、3、5组成的棱长为30的正方体的一条对角线穿过的长方体为整数个,所以由2、3、5组成棱长为90的正方体的一条对角线穿过的小长方体的个数应为3的倍数.答案:B2.图11是一个奖杯,可以近似地看作由哪几种几何体组成?图11答案:奖杯的底座是一个正棱台,底座的上

面是一个正四棱柱,奖杯的最上部,在正棱柱上底面的中心放着一个球.(四)拓展提升1.请想一想正方体的截面可能是什么形状的图形?活动:静止是相对的,运动是绝对的,点动成线,线动成面.用运动的观点看几何问题的形成,

容易建立空间想象力,这样对于分割和组合图形是有好处的.明确棱柱、棱锥、棱台等多面体的定义及圆柱、圆锥、圆台的生成过程,以及柱、锥、台的相互关系,对于我们正确的割补图形也是有好处的.对于正方体的分割,可通过实物模型,实际切割实验,还可借助于多媒体手段进行切割实验.对于切割

所得的平面图形可根据它的定义进行证明,从而判断出各个截面的形状.探究:本题考查立体几何的空间想象能力,通过尝试、归纳,可以有如下各种肯定或否定性的答案:(1)截面可以是三角形:等边三角形、等腰三角形、一般三角形.(2)截面三角形是锐角三角形,截面三角形不能是直角三角形、钝角三角形

.(3)截面可以是四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形;截面为四边形时,这个四边形至少有一组对边平行.7(4)截面不能是直角梯形.(5)截面可以是五边形:截面五边形必须有两组分别平行

的边,同时有两个角相等;截面五边形不可能是正五边形.(6)截面可以是六边形:截面六边形必须有分别平行的边,同时有两个角相等.(7)截面六边形可以是等角(均为120°)的六边形,即正六边形.截面图形如图12中各图所示:图12(五)课堂小结本节课学

习了简单组合体的概念和结构特征.(六)作业习题1.1A组第3题;B组第2题.

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 326073
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?