5.3 ?2?? ???????

DOC
  • 阅读 2 次
  • 下载 0 次
  • 页数 6 页
  • 大小 39.327 KB
  • 2024-10-15 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
5.3 ?2?? ???????
可在后台配置第一页与第二页中间广告代码
5.3 ?2?? ???????
可在后台配置第二页与第三页中间广告代码
5.3 ?2?? ???????
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的3 已有2人购买 付费阅读2.40 元
/ 6
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】5.3 ?2?? ???????.docx,共(6)页,39.327 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-50ce9921fe1d2bab698f4fffa01ff0f0.html

以下为本文档部分文字说明:

第2课时诱导公式五、六A级必备知识基础练1.若α∈(π,3π2),则√1-sin2(3π2-𝛼)=()A.sinαB.-sinαC.cosαD.-cosα2.已知sin25.3°=a,则cos64.7°等于()A.aB.-aC.a2D.√1-𝑎23.如果角

θ的终边经过点(-35,45),那么sinπ2+θ+cos(π-θ)+tan(2π-θ)等于()A.-43B.43C.34D.-344.(2021黑龙江哈尔滨南岗高一期末)已知sinπ6+α=-45,则cosπ3-α=()A.45B.35C.-45D.-355.α为

锐角,2tan(π-α)-3cos(π2+𝛽)=-5,tan(π+α)+6sin(π+β)=1,则sinα=()A.3√55B.3√77C.3√1010D.136.若cosα=13,且α是第四象限的角,则sinα=,cos(𝛼+3π2)=.7.若sin(π2+𝜃)=37,则co

s2(π2-𝜃)=.8.(2021天津东丽高一期末)已知sin(π+α)=-45,α∈π2,π,求sin(π2+𝛼)+2cos(π-𝛼)sin(π2-𝛼)+sin(-𝛼).B级关键能力提升练9.(2022吉林公主岭高一期末)已知角θ终边经

过点(3,-4),则sin(3π2-𝜃)cos(π+𝜃)sin(π2+𝜃)cos(5π2+𝜃)=()A.34B.43C.-43D.-3410.计算sin21°+sin22°+sin23°+…+sin289°等于()A.89B.90C.892D.4511.已知cos(60°+α)

=13,且-180°<α<-90°,则cos(30°-α)的值为()A.-2√23B.2√23C.-√23D.√2312.已知角α的终边上有一点P(1,3),则sin(π-𝛼)-sin(π2+𝛼)cos(3π2-𝛼)+2cos(-π+𝛼

)的值为()A.-25B.-45C.-47D.-413.(多选题)(2021山东青岛高一期末)在△ABC中,下列等式恒成立的是()A.tan(A+B)=tanCB.cos(2A+2B)=cos2CC.sin𝐴+𝐵2=sin𝐶2D.sin𝐴+𝐵2=cos𝐶214.(多选题)定义:角

θ与φ都是任意角,若满足θ+φ=π2,则称θ与φ“广义互余”.已知sin(π+α)=-14,则下列角β中,可能与角α“广义互余”的是()A.sinβ=√154B.cos(π+β)=14C.tanβ=√15D.tanβ=√15515.已知si

n(𝜃-π3)=13,则sin(𝜃+2π3)=,cos(𝜃-5π6)=.16.已知cos(π2+𝛼)=2sin(𝛼-π2),则sin(π-𝛼)+cos(π+𝛼)5cos(5π2-𝛼)+3sin(7π2-𝛼)=.17.已知sinα=12,则cos(𝛼-π2)sin(

5π2+𝛼)sin(α-π)cos(2π-α)的值为.18.已知角α的终边经过点P(45,-35).(1)求sinα的值;(2)求sin(π2-𝛼)tan(𝛼-π)sin(𝛼+π)cos(3π-�

�)的值.C级学科素养创新练19.是否存在角α,β,α∈(-π2,π2),β∈(0,π),使等式sin(3π-α)=√2cos(π2-𝛽),√3cos(-α)=-√2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.第2课时诱导公式五、六1.B∵α∈(π,3

π2),∴sinα<0,∴√1-sin2(3π2-𝛼)=√1-cos2𝛼=√sin2𝛼=-sinα.2.Acos64.7°=cos(90°-25.3°)=sin25.3°=a.3.B易知tanθ=-43,所以原式=cosθ-cosθ-tanθ=43.4.C∵sinπ6+α

=-45,∴cosπ3-α=cosπ2-π6+α=sinπ6+α=-45,故选C.5.C由条件可知-2tanα+3sinβ=-5,①tanα-6sinβ=1.②①×2+②可得tanα=3,即sinα=3cosα.又sin2α+cos2α=1,α为锐角,所以cos

α=√1010,sinα=3√1010.6.-2√23-2√23因为α是第四象限的角,所以sinα=-√1-cos2𝛼=-2√23,于是cos(𝛼+3π2)=-cos(𝛼+π2)=sinα=-2√23.7.4049sin(π2+𝜃)=cosθ=37,则cos2(π2-𝜃)=sin2θ=

1-cos2θ=1-949=4049.8.解∵sin(π+α)=-sinα=-45,α∈π2,π,∴sinα=45,∴cosα=-√1-sin2𝛼=-35.sin(π2+𝛼)+2cos(π-𝛼)sin(π2-𝛼)+sin(-𝛼)=cos𝛼-2cos�

�cos𝛼-sin𝛼=-cos𝛼cos𝛼-sin𝛼=-37.9.A∵角θ终边经过点(3,-4),∴tanθ=-43,则sin(3π2-𝜃)cos(π+𝜃)sin(π2+𝜃)cos(5π2+𝜃)=-c

os𝜃(-cos𝜃)cos𝜃(-sin𝜃)=-1tan𝜃=34,故选A.10.C∵sin21°+sin289°=sin21°+cos21°=1,sin22°+sin288°=sin22°+cos22°=1,……,∴sin21°+sin22°+si

n23°+…+sin289°=44+sin245°=44+12=892.11.A由-180°<α<-90°,得-120°<60°+α<-30°,所以sin(60°+α)<0,所以cos(30°-α)=sin(60°

+α)=-√1-cos2(60°+𝛼)=-√1-(13)2=-2√23.12.A因为角α终边上有一点P(1,3),所以cosα≠0,tanα=3,所以sin(π-𝛼)-sin(π2+𝛼)cos(3π2-𝛼)+2cos(-π+𝛼)=sin𝛼-cos𝛼-sin𝛼-2cos�

�=tan𝛼-1-tan𝛼-2=3-1-3-2=-25.故选A.13.BDtan(A+B)=tan(π-C)=-tanC,故A不正确;cos(2A+2B)=cos[2(π-C)]=cos(2π-2C)=cos2C,故

B正确;sin𝐴+𝐵2=sinπ-𝐶2=cos𝐶2,故C不正确,D正确.故选BD.14.AC∵sin(π+α)=-sinα=-14,∴sinα=14,∴cosα=±√154.若α+β=π2,则β=π2-α.A中,sinβ=sinπ2-α=cosα=±√154,故A符合条件;

B中,cos(π+β)=-cosπ2-α=-sinα=-14,故B不符合条件;C,D中,tanβ=tan(π2-𝛼)=sin(π2-𝛼)cos(π2-𝛼)=cos𝛼sin𝛼=±√15,故C符合条件,D不符合条件.15.-1313sin(𝜃

+2π3)=sin[π+(𝜃-π3)]=-sin(𝜃-π3)=-13,cos(𝜃-5π6)=cos[(𝜃-π3)-π2]=cos[π2-(𝜃-π3)]=sin(𝜃-π3)=13.16.17因为cos(π2+𝛼)=2

sin(𝛼-π2),所以sinα=2cosα,所以原式=sin𝛼-cos𝛼5sin𝛼-3cos𝛼=2cos𝛼-cos𝛼10cos𝛼-3cos𝛼=17.17.-14原式=cos(π2-𝛼)sin(π2+𝛼)[-sin(π-

α)]cos(-α)=sin𝛼cos𝛼(-sinα)cosα=-sin2α=-14.18.解(1)∵角α的终边经过点P(45,-35),∴|OP|=1(O是坐标原点),∴sinα=-35.(2)sin(π2-𝛼)tan(𝛼-π)s

in(𝛼+π)cos(3π-𝛼)=cos𝛼tan𝛼-sin𝛼(-cos𝛼)=1cos𝛼,由三角函数定义知cosα=45,故所求式子的值为54.19.解由条件,得{sin𝛼=√2sin𝛽,√3cos𝛼=√2cos𝛽,①②①2+②2得sin2α+3cos2α=2,∴co

s2α=12.又α∈(-π2,π2),∴α=π4或α=-π4.将α=π4代入②,得cosβ=√32.又β∈(0,π),∴β=π6,代入①可知符合;将α=-π4代入②,得cosβ=√32.又β∈(0,π),∴β=π6,代入①可知

不符合.

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 328305
  • 被下载 21
  • 被收藏 0
相关资源
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?