江苏省七市2021届高三下学期第三次调研考试数学试题 答案(定稿)4444

PDF
  • 阅读 12 次
  • 下载 0 次
  • 页数 4 页
  • 大小 278.500 KB
  • 2024-10-08 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【管理员店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
江苏省七市2021届高三下学期第三次调研考试数学试题 答案(定稿)4444
可在后台配置第一页与第二页中间广告代码
江苏省七市2021届高三下学期第三次调研考试数学试题 答案(定稿)4444
可在后台配置第二页与第三页中间广告代码
江苏省七市2021届高三下学期第三次调研考试数学试题 答案(定稿)4444
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的1 已有12人购买 付费阅读2.40 元
/ 4
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】江苏省七市2021届高三下学期第三次调研考试数学试题 答案(定稿)4444.pdf,共(4)页,278.500 KB,由管理员店铺上传

转载请保留链接:https://www.doc5u.com/view-4efc9cc28755c3f5a9c92df65602f1c7.html

以下为本文档部分文字说明:

数学试卷第1页(共4页)高三数学第三次调研参考答案一、选择题:本题共8小题,每小题5分,共40分。1.C2.B3.C4.D5.B6.C7.A8.B二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项

中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。9.BC10.AC11.ABD12.BCD三、填空题:本题共4小题,每小题5分,共20分。13.81314.23.615.716.(第一空

2分,第二空3分)二十,1203401517.(1)设数列na的公差为d(0)d,则74735Sa,即45a,……1分所以14353aadd,74353aadd.因为1a,41a,7a成等比数列,

所以2417(1)aaa,即24(53)(53)dd,解得1d(舍去)或1d,……3分所以1nan.……5分(2)因为1nnnbba,所以21234212nnnTbbbbbb1234212nnbbbbbb

1321naaa……8分2(22)2nnnn.……10分18.(1)满足题意的2个条件的序号为①③.……1分由条件①知,π3sin2012,所以π2π()12kk

Z,即ππ()6kkZ.因为π02,所以π6.……3分由条件②知,5π3sin2312,所以5ππ22π()122kkZ,即π2π()3kkZ.因为π02,所以π3.……5分由条件③知,1

sin2,即π7π2π2π()66kkkZ或.因为π02,所以π6.综上,满足题意的2个条件的序号为①③.……7分(2)由(1)知,π()3sin26fxx,

所以2π()3sin26cos6gxxxππ1cos23sin2coscos2sin6662xxx数学试卷第2页(共4页)333sin2cos2322xxπ3sin236x.……10分

因为π1sin216x≤≤,所以0()6gx≤≤,所以函数()gx的值域为06,.……12分19.(1)由题知,的可能取值为0,1,2,3,4310H,,.0437410106CCPC,1337410112C

CPC,22374103210CCPC,31374101330CCPC……4分所以的概率分布为:0123P1612310130所以的数学期望113101231.2621030E

.……6分另法:因为4310H,,,数学期望43()1.210nMEN.(2)记“至少有一个零件直径大于124mm”为事件A,因为1204XN,,所以1202,,……

8分所以10.95451(||2)1240.0227522PXPX≤,所以12410.022750.97725PX≤,……10分所以1010.9772510.79440.2056PA.答:至少有一件零件直径大于124mm的概率为

0.2056.……12分20.(1)因为平面BCD平面ABD,平面BCD平面ABDBD,BCBD,BC平面BCD,所以BC平面ABD.又AD平面ABD,所以BCAD.……2分因为A是以BD为直径的半圆O上一点,所以ABAD

.……4分又ABBCB,AB,BC平面ABC,所以AD平面ABC.……6分(2)在平面ABD上,过点O作OyBD,在平面BCD上,过点O作Oz∥BC,由(1)知,BC平面ABD,建立如图所示的空间直角坐标系Oxyz.因

为22BDBC,2ADAB,则31(0)22A,,,(100)B,,,(101)C,,,(100)D,,,所以(201)CD,,,33(0)22DA,,.ABDOzyxC数学试卷第3页(共4页)设平面ACD的一个法向量为()xyz,,m,则2033022CDx

zDAxy,,mm取1x,则3y,2z,所以(132),,m.……9分因为y轴平面BCD,所以平面BCD的一个法向量(010),,n.……10分设二面角ACDB的平面角为,为锐角,则2221(3)6co

scos41(3)(2),mnmnmn,所以二面角ACDB的余弦值为64.……12分21.(1)依据圆与抛物线的对称性,四边形ABCD是以y轴为对称轴的等腰梯形,不妨设ABCD,AD,在第一象限,11()Axy,,22()Dxy,,则11()Bxy

,,22()Cxy,.联立2225()42(0)xyxmym,,,消去x得:29(5)04ymy().方程()有互异二正根,所以21212(5)905094myymyy,,,解得02m.……1分由154OAOD

,得1212154xxyy,即1212154myyyy,……3分由1294yy,得1m.……5分(2)依据对称性,点G在y轴上,可设(0)Ga,.由AGACkk得,112112yayyxxx

,所以12112112()yyyayymymyym,则1232ayy,即3(0)2G,.……8分方法一:12211122()()()()()GABGCDABCDSSSSxxyyxayxya△△梯12

2121122121()()()xyxyaxxmyyyyamyy21121212()()323(2)myyyyamyyyymm10分(2)332mm≤.当且仅当2mm,即1m时,S最大值为

3.……12分方法二:121233()()222ABDABGSSSxymyy△△数学试卷第4页(共4页)1221211212333()()2222myyyymyymyyyy10分233

3(53)(1)1222mmm≤,所以3S≤.当且仅当1m时,S最大值为3.……12分22.(1)()2sincos3sin23fxaxxax,由3π()3032fa,知2a,……2分所以()2sin23fxx.令()0fx,

π02x,,得ππ63x;令()0fx,π02x,,得π06x或ππ32x,所以()fx在ππ63,上单调递增,在π06,和ππ32,上单调递减.……4分(2)(i)当02a时,2()2sin3

fxxx,设2()2sin3hxxx.①当π02x时,由(1)知3π3()()π0323hxh极大,又(0)0h,所以()0hx,从而()0fx.②当π2x时,3()()2π02fxhx

.由①②知,当0x时,()0fx1(i);……6分当0x时,()30fxx≥2(i).由12(i)(i)得,0x时,()0xfx.……8分(ii)当20a时,方法一:2()2sin3fxxx,设2()2sin3gxxx,3()2(sin2)

2gxx.①当π02x时,由()0gx得,1π6x,2π3x,同理有3π3()()π0323fxg极小,又ππ()()023gg,(0)0g,所以()0gx,从而()0fx.……10分②当π2x时,3

()2π02fx.由①②得,当0x时,()0fx1(j);当0x时,显然()0fx2(j).由12(j)(j)得,0x时,()0xfx.由(i)(ii)结论获证.……12分方法二:则02a,则2()sin3gxaxx,满足0x时,()0

xgx.又()yxfx与()yxgx的图象关于y轴对称,所以0x时,()0xfx.由(i)(ii)结论获证.……12分

管理员店铺
管理员店铺
管理员店铺
  • 文档 467379
  • 被下载 24
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?