广西南宁三中2019-2020学年高二下学期期末考试理科数学(重点班)试题PDF版含答案

PDF
  • 阅读 1 次
  • 下载 0 次
  • 页数 12 页
  • 大小 320.096 KB
  • 2024-09-06 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
广西南宁三中2019-2020学年高二下学期期末考试理科数学(重点班)试题PDF版含答案
可在后台配置第一页与第二页中间广告代码
广西南宁三中2019-2020学年高二下学期期末考试理科数学(重点班)试题PDF版含答案
可在后台配置第二页与第三页中间广告代码
广西南宁三中2019-2020学年高二下学期期末考试理科数学(重点班)试题PDF版含答案
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的9 已有1人购买 付费阅读2.40 元
/ 12
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】广西南宁三中2019-2020学年高二下学期期末考试理科数学(重点班)试题PDF版含答案.pdf,共(12)页,320.096 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-4cbf18fa4d0b186988d9c6fad4ea8b54.html

以下为本文档部分文字说明:

高二期考理科数学试题第1页,共4页南宁三中2019~2020学年度下学期高二期考理科数学试题命题人:审题人:2020.7一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设i为虚数单位,复数z满足zi

25,则在复平面内,z对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:“我没有偷”;乙:“丙是小偷”;丙:“丁是小偷”;丁:“我没有偷”.根据以上条件,可以

判断偷珠宝的人是()A.甲B.乙C.丙D.丁3.用数学归纳法证明111111111234212122nNnnnnn,则从k到1k时左边添加的项是()A.121kB.112224kkC.122kD

.112122kk4.已知函数32()2fxxx,x[1,3],则下列说法不正确...的是()A.最大值为9B.最小值为3C.函数()fx在区间[1,3]上单调递增D.0x是它的极大值点5.抛掷

两枚质地均匀的骰子,观察向上的点数,记事件A为“两个点数不同”,事件B为“两个点数中最大点数为4”,则()PBA()A.112B.16C.15D.566.有8件产品,其中4件是次品,从中有放回地取3次(每次1件),若X表示取得次品的次数,则(2)PX()A.83B.

1314C.45D.787.2020年3月31日,某地援鄂医护人员A,B,C,D,E,F,6人(其中A是队长)圆满完成抗击新冠肺炎疫情任务返回本地,他们受到当地群众与领导的热烈欢迎.当地媒体为了宣传他们的优秀事迹,让这6名医护人员和接见他们的一位领导共7人站一排进行拍照,则领导和队长分别站在两端

且BC相邻,而BD不相邻的排法种数为()A.36种B.48种C.56种D.72种8.甲、乙两队进行篮球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主

”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队不超过4场即获胜的概率是()A.0.18B.0.21C.0.39D.0.429.电路从�到�上共连接着6个灯泡(如图),每

个灯泡断路的概率是31,整个电路的连通与否取决于灯泡是否断路,则从�到�连通的概率是()高二期考理科数学试题第2页,共4页A.1027B.448729C.100243D.408110.已知21ln(0)2fxaxxa,若对任意两个不等的正实

数1x,2x,都有12122fxfxxx恒成立,则a的取值范围是()A.0,1B.1,C.0,1D.1,11.已知随机变量21,XN,且0PXPXa

,则53221axxx的展开式中4x的系数为()A.680B.640C.180D.4012.在R上可导的函数3211()232fxxaxbxc,当(0,1)x时取得极大值,当(1,2)x

时取得极小值,则21ba的取值范围是()A.11(,)22B.11(,)24C.(1,14)D.1(,1)2二、填空题(本大题共4小题,每小题5分)13.从10名大学毕业生中选3个人担任村长助理,甲、乙至少有1人入选的不同选法的种数为___________.14.定积分102

)421(xx的值_______________15.已知45015(2)(1)(1)(1)xxaaxax,则135aaa____________.16.已知函数xafxxe,ln24axgxxe,其中e

为自然对数的底数,若存在实数0x使003fxgx成立,则实数a的值为______.三、解答题(解答应写出文字说明.证明过程或演算步骤,第17-21题每题12分,选做题10分,共70分)17.从甲地到乙地要经过3个十字路口,设各路口信号灯工

作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和均值.(2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.高二期考理科数学试题第3页,共4页18.如图,四棱

锥PABCD,//ABCD,90BCD,224ABBCCD,PAB为等边三角形,平面PAB平面ABCD,Q为PB中点.(1)求证:AQ平面PBC;(2)求二面角BPCD的余弦值.19.近年来,国资委党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重

大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表所示:土地使用面积x(单位:亩)1234

5管理时间y(单位:月)810132524并调查了某村300名村民参与管理的意愿,得到的部分数据如下表所示:愿意参与管理不愿意参与管理男性村民15050女性村民50(1)求出相关系数r的大小,并判断管理时间y与土地使用面积x是否线性相关?(2)是否有99.9%的把握认为村

民的性别与参与管理的意愿具有相关性?参考公式:niniiiniiiyyxxyyxxr11221)()())((,22(),()()()()nadbckabcdacbd其中nabcd.临界值表:20()PKk0.1000.0500.0250.

0100.0010k2.7063.8415.0246.63510.828参考数据:63525.2高二期考理科数学试题第4页,共4页20.已知椭圆C:22221(0)xyabab的右焦点为F,上顶点为M,直线F

M的斜率为22,且原点到直线FM的距离为63.(1)求椭圆C的标准方程;(2)若不经过点F的直线l:)0,0(mkmkxy与椭圆C交于,AB两点,且与圆221xy相切.试探究ABF的周长是否为

定值,若是,求出定值;若不是,请说明理由.21.已知函数2ln2fxxxaxx,aR.(Ⅰ)若fx在),0(上单调递减,求实数a的取值范围;(Ⅱ)若函数fx有两个极值点分别为1x,2x,证明:1212xxa.选做题:考生需从第22题和第23题中选一道作答22.在

平面直角坐标系xOy中,曲线1C的参数方程为1cossinxy(为参数),以坐标原点O为极点,x轴非负半轴为极轴建立极坐标系,点A为曲线1C上的动点,点B在线段OA的延长线上且满足||||8,OAOB点B的轨迹为2C.(1)求曲线12,CC的

极坐标方程;(2)设点M的极坐标为32,2,求ABM面积的最小值.23.设函数()212fxxxa,xR.(1)当4a时,求不等式()9fx的解集;(2)对任意xR,恒有()5fxa

,求实数a的取值范围.答案第1页,总8页高二期考理科数学试题参考答案1.B【解析】因为25zi,所以5252222iziiii,由共轭复数的定义知,2zi,由复数的几何意义可知,z在复平面对应的点为2,1,位于第二象限.选:B2.A【解析】试题分

析:若甲说的是真话,则乙、丙、丁都是说假话,所以丁偷了珠宝,所以,丙说的也是真话,与只有一个人说真话相矛盾,所以甲说的假话,偷珠宝的人是甲.3.D【解析】根据式子的结构特征,求出当nk时,等式的左边,再求出1nk时,等式的左边,当nk时,等式的左边为111111234

212kk,当1nk时,等式的左边为111111112342122122kkkk,故从“nk到1nk”,左边所要添加的项是112122kk.故选:D.4.C【解析】2()34fxxx

,令2()340fxxx,解得0x或43x,所以当[1,0)x,4(,3]3时,()0fx,函数()fx单调递增,当4(0,)3x时,()0fx,函数()fx单调递减,C错误;所以0x是它的极大值点,D正确;因为(

0)0,(3)27299ff,所以函数()fx的最大值为9,A正确;因为4641632(1)123,()2327927ff,所以函数()fx的最小值为3,B正确.故选:C5.C【解析】由题意,抛掷两枚均匀骰子,构成的基本事件的总数共有36种,其中记事

件A为“两个点数不同”的基本事件共有36630种,又由事件“两个点数不同且最大点数为4”的基本事件为:(1,4),(2,4),(3,4),(4,1),(4,2),(4,3),共有6种,所以6()136()

30()536PABPBAPA,故选C.6.D因为是有放回地取产品,所以每次取产品取到次品的概率为4182.从中取3次,X为取得次品的次数,则13,2XB,3102323331(2)(2)(1)0111722228PXPXPXPXCCC

,7.D【解析】让这6名医护人员和接见他们的一位领导共7人站一排进行拍照,则领导和队答案第2页,总8页长站在两端且BC相邻分2步进行分析:①领导和队长站在两端,有222A种情况,②中间5人分2种情况讨论:若BC相邻且与D相邻,有

232312AA种安排方法,若BC相邻且不与D相邻,有22222324AAA种安排方法,则中间5人有12+24=36种安排方法,则有23672种不同的安排方法;故选:D.8.C【解析】甲、乙两队进行排球决赛,

采取五场三胜制(当一队赢得三场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以3:1获胜的概率是:10.60.610.50.50.610.60.50.510

.60.60.50.50.21P.甲队以3:0获胜的概率是:20.60.60.50.18P则甲队不超过4场即获胜的概率120.210.180.39PPP故选:C9.B【解析】如图,可知AC之

间未连通的概率是������,连通的概率是�������.EF之间连通的概率是������,未连通的概率是�������,故CB之间未连通的概率是��������,故CB之间连通的概率是�����������,故AB之间连通的概率是������

��������故选B10.D【解析】根据1212()()2fxfxxx可知112212()2[()]20fxxfxxxx,令21()2ln()202gxfxxaxaxx为增函数,所以'200,0agxxxax恒成立

,分离参数得2axx,而当0x时,2xx最大值为1,故1a.11.A【解析】因为随机变量21,XN,0PXPXa,所以2a,代入可得532212xxx,故532212xxx展开式中包

含4x的项为:23323220323444535322240640680CxCCxCxxxxxx,系数为680,故选:A.12.C【解析】20002{

10{21,202fbfxxaxbfababfab在由答案第3页,总8页2,0,1,0,3,1所构成的三角形的内部,21ba可看作点,ab与点()1,2的连线的斜率,结合图形可知21,114ba

13.645612038310CC14.115.1【解析】由450152111xxaaxax,令x=0可得:2=a0+a1++a5;令x=−2可得:0

=a0−a1+a2+−a5.相减可得:2(a1+a3+a5)=2,则a1+a3+a5=1.故答案为:1.16.ln21【解析】构造函数:34ln23xaaxhxfxgxxeex

,存在实数0x使003fxgx成立,即ln234xaaxhxxxee有解,考虑函数11ln23,1,2,22xdxxxdxxxx,0,2,1dxx,0,1,dxx所以

ln23dxxx在2,1x递减,在1,x递增,所以min14dxd,44xaaxee,当且仅当42xaaxee时,取得等号,所以ln2340xaaxxxee

要使ln234xaaxhxxxee有零点,必须零点为1,且1142aaee,即ln21a.故答案为:ln21.17.(Ⅰ)解:随机变量X的所有可能

取值为0,1,2,3.111101112344PX,11111111111111111123423423424PX

,111111111121112342342344PX,1111323424PX.所以,随机变量X的分布列为X012

3答案第4页,总8页P14112414124随机变量X的数学期望1111113012342442412EX.(Ⅱ)解:设Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数,则所求事件的概率为10

,11,00110PYZPYZPYZPYPZPYPZ1111111142424448.所以,这2辆车共遇到1个红灯的概率为1148.18.(1)证明:因为//ABCD,90BCD,所以ABBC,又平面PAB平面ABCD

,且平面PAB平面ABCDAB,所以BC⊥平面PAB.又AQ平面PAB,所以BCAQ,因为Q为PB中点,且PAB为等边三角形,所以PBAQ.又PBBCB,所以AQ平面PBC.(2)取AB中

点为O,连接PO,因为PAB为等边三角形,所以POAB,因为平面PAB平面ABCD,所以PO平面ABCD,所以POOD,由224ABBCCD,90ABC,可知//ODBC,所以ODAB.以AB中点O为坐标原点,分别以OA,OD,OP所在直线为x,y,z轴,

建立如图所示的空间直角坐标系Oxyz.所以2,0,0A,0,2,0D,2,2,0C,0,0,23P,2,0,0B,所以0,2,23DP,2,0,0CD

,由(1)知,AQ为平面PBC的法向量,因为Q为PB的中点,所以1,0,3Q,所以3,0,3AQ,设平面PCD的法向量为,,nxyz,由00nCDnDP

,得202230xyz,取1z,则0,3,1n.所以23cos,3331AQnAQnAQn14.答案第5页,总8

页因为二面角BPCD为钝角,所以,二面角BPCD的余弦值为14.19.解:依题意:123458101325243,1655xy故51()()(2)(8)(1)(6)192847

ixxyy552211()411410,()643698164254iixxyy则5155221111()()47470.933102542635()()iiixxyyrxxyy

,故管理时间y与土地使用面积x线性相关.(2)依题意,完善表格如下:愿意参与管理不愿意参与管理总计男性村民15050200女性村民5050100总计200100300计算得2k的观测值为2

2300(150505050)3005000500018.7510.828200100200100200100200100k故有99.9%的把握认为村民的性别与参与管理的意愿具有相关20.(1)由题可知,,0Fc,0,Mb,则22bc

,直线FM的方程为1xycb,即0bxcybc,所以2263bcbc,解得1b,2c,又2223abc,所以椭圆C的标准方程为2213xy.(2)因为直线)0,0(mkmkxy与圆221xy相切,所以211mk,即221m

k.设11,Axy,22,Bxy,答案第6页,总8页联立2213xyykxm,得222316310kxkmxm,所以22223612311kmkm222123124

0kmk,122631kmxxk,21223131mxxk,所以2121ABkxx22222313131kkmk.又221mk,所以22631mkABk.因为

22112AFxy22111621333xxx,同理2633BFx.所以126233AFBFxx,所以ABF的周长是1226262323331mkxxk

,则ABF的周长为定值23.21.(I)ln24fxxax.∴fx在0,内单调递减,∴ln240fxxax在0,内恒成立,即ln24xaxx在0,内恒成立.令ln2xgxxx,则21ln

xgxx,∴当10ex时,0gx,即gx在10,e内为增函数;当1xe时,0gx,即gx在1,e内为减函数.∴gx的最大值为1gee,∴e,4a(Ⅱ)若函数fx有两个极值点分别为1x

,2x,则ln240fxxax在0,内有两根1x,2x,答案第7页,总8页由(I),知e04a.由1122ln240ln240xaxxax,两式相减,得1212lnln4xxaxx.不妨设120xx,∴要证明1212xxa,

只需证明121212142lnlnxxaxxaxx.即证明1212122lnlnxxxxxx,亦即证明12112221ln1xxxxxx.令函数.∴22(1)'()0(1)xhxxx,即函数hx在0,1内单调递减.∴0,1x

时,有10hxh,∴2(1)ln1xxx.即不等式12112221ln1xxxxxx成立.综上,得1212xxa.22.(1)由曲线1C的参数方程为1cossinxy(为参数),消去参数,可得普通方程为2211xy,即2220

xyx,又由cos,sinxy,代入可得曲线1C的极坐标方程为2cos,设点B的极坐标为(,),点A点的极坐标为00(,),则0000,,2cos,OBOA,因为||||8

OAOB,所以08,即82cos,即cos4,所以曲线2C的极坐标方程为cos4.(2)由题意,可得2OM,则2211||||242cos42cos22ABMBOBMOMAASSSOMxx,即242cos

ABMS,当2cos1,可得ABMS的最小值为2.答案第8页,总8页23.解:(1)当4a时,145,21()3,2245,2xxfxxxx,则()9fx等价于12459xx

或12239x或2459xx,解得1x或72x,所以()9fx的解集为712xxx或.(2)由绝对值不等式的性质有:()21221(2)1fxxxaxxaa,由

()5fxa恒成立,有15aa恒成立,当5a时不等式显然恒成立,当5a时,由221(5)aa得35a,综上,a的取值范围是[3,).

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
相关资源
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?