【文档说明】2024年新高考数学一轮复习题型归纳与达标检测 第62讲 随机抽样与用样本估计总体(讲)(原卷版).docx,共(8)页,152.025 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-4b383cac7c87e521f53d260eec60a540.html
以下为本文档部分文字说明:
第62讲随机抽样与用样本估计总体思维导图知识梳理1.简单随机抽样(1)定义:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫
做简单随机抽样.这样抽取的样本,叫做简单随机样本.(2)常用方法:抽签法和随机数法.2.分层抽样(1)在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体
合在一起作为样本,这种抽样方法是一种分层抽样.(2)分层抽样的应用范围当总体是由差异明显的几个部分组成时,往往选用分层抽样.3.频率分布直方图(1)纵轴表示频率组距,即小长方形的高=频率组距;(2)小长方形的面积=组距×频率组距=频率;(3)各个
小方形的面积总和等于1.4.频率分布表的画法第一步:求极差,决定组数和组距,组距=极差组数;第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;第三步:登记频数,计算频率,列出频率分布表.5.条形图、折线图及扇形图(1)条形图:建立直角坐标系,用横轴(横轴上的数字)表示样本数
据类型,用纵轴上的单位长度表示一定的数量,根据每个样本(或某个范围内的样本)的数量多少画出长短不同的等宽矩形,然后把这些矩形按照一定的顺序排列起来,这样一种表达和分析数据的统计图称为条形图.(2)折线图:建立直角坐标系,用横轴上的数字表示样本值,用纵轴上的单位长度表示一定的数量,根据样本值和
数量的多少描出相应各点,然后把各点用线段顺次连接,得到一条折线,用这种折线表示出样本数据的情况,这样的一种表示和分析数据的统计图称为折线图.(3)扇形图:用一个圆表示总体,圆中各扇形分别代表总体中的不同部分,每个扇形的大小反映所表示的那部分占总体的百分比的
大小,这样的一种表示和分析数据的统计图称为扇形图.6.中位数、众数、平均数的定义(1)中位数将一组数据按大小依次排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.(2)众数一组数据中出现次数最多的数据叫做这组数据的众数.(3)平均数一组数据的算术平均数即为这
组数据的平均数,n个数据x1,x2,…,xn的平均数x=1n(x1+x2+…+xn).7.样本的数字特征如果有n个数据x1,x2,…,xn,那么这n个数的(1)标准差s=1n[(x1-x)2+(x2-x)2+…+(xn-x)2].(2)方差s2=1n[(x1-x)2+(x2
-x)2+…+(xn-x)2].题型归纳题型1抽样方法【例1-1】假设从高一年级全体同学(500人)中随机抽出60人参加一项活动,利用随机数法抽取样本时,先将500名同学按000,001,…,499进行编号,如果从随机数表第8行第11列的数开始,按三位数连续向右读取,最先抽出的5名同学的号码是(下
面摘取了此随机数表第7行和第8行)()8442175331572455068877047447672176335025839212067663016378591695556719981050717512867358074439523879A.455068047447176B.169105071
286443C.050358074439332D.447176335025212【例1-2】(2019·河南名校联考)《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱,欲以钱数多少衰出之,
问各几何?”其意为:“今有甲带了560钱,乙带了350钱,丙带了180钱,三人一起出关,共需要交关税100钱,依照钱的多少按比例出钱”,则丙应出________钱(所得结果四舍五入,保留整数).【跟踪训练1-1】某学校三个兴趣小组的学生人数
分布如下表(每名同学只参加一个小组)(单位:人).篮球组书画组乐器组高一4530a高二151020学校要对这三个小组的活动效果进行抽样调查,按小组分层抽样的方法,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a的值为________.【名师指导】1.应用简单随机抽样应注意的
问题(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)在使用随机数法时,如遇到三位数或四位数,可从选择的随机数表中的某行某列的数字计起,每
三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.2.分层抽样问题的类型及解题思路(1)求某层应抽个体数量:按该层所占总体的比例计算.(2)已知某层个体数量,求总体容量或反之求
解:根据分层抽样就是按比例抽样,列比例式进行计算.(3)分层抽样的计算应根据抽样比构造方程求解,其中“抽样比=样本容量总体容量=各层样本数量各层个体数量”.题型2频率分布直方图的应用【例2-1】(2019·全国卷Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行
如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分
比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【跟踪训练2
-1】(2019·南昌市第一次模拟测试)市面上有某品牌A型和B型两种节能灯,假定A型节能灯使用寿命都超过5000小时.经销商对B型节能灯使用寿命进行了调查统计,得到如下频率分布直方图:某商家因原店面需重新装修,需租
赁一家新店面进行周转,合约期一年.新店面只需安装该品牌节能灯5支(同种型号)即可正常营业.经了解,A型20瓦和B型55瓦的两种节能灯照明效果相当,都适合安装.已知A型和B型节能灯每支的价格分别为120元、25元,当地商业电价为0.75元/千瓦时.假定该店面一年周转期的
照明时间为3600小时,若正常营业期间灯坏了立即购买同型灯管更换.(用频率估计概率)(1)根据频率分布直方图估算B型节能灯的平均使用寿命;(2)根据统计知识知,若一支灯管一年内需要更换的概率为p,那么n支灯管估计需
要更换np支,若该商家新店面全部安装了B型节能灯,试估计一年内需更换的数量;(3)若只考虑灯的成本和消耗电费,你认为该商家应选择哪种型号的节能灯,请说明理由.【跟踪训练2-2】某网络营销部门随机抽查了某市200名网友在2019年11月11日的网购金额,所得数据如下表:
网购金额(单位:千元)人数频率(0,1]160.08(1,2]240.12(2,3]xp(3,4]yq(4,5]160.08(5,6]140.07总计2001.00已知网购金额不超过3千元与超过3千元的人数比恰为3∶2.(1)试确定x,y,p,q的值,并补全频率分布直
方图(如图);(2)该营销部门为了了解该市网友的购物体验,从这200名网友中,用分层抽样的方法从网购金额在(1,2]和(4,5]的两个群体中确定5人进行问卷调查,若需从这5人中随机选取2人继续访谈,则此2人来自不同群体的概率是多少?【名师指导】熟记结论(1)在频率分布直方图中,各小
长方形的面积表示相应各组的频率,所有小长方形的面积的和等于1;(2)频率组距×组距=频率;(3)频数样本容量=频率,此关系式的变形为频数频率=样本容量,样本容量×频率=频数易错防范频率分布直方图的纵坐标是频率组距,而不是频率题型3用样本的数字特征估计总体的数字特征【例3-1】
(2019·昆明市诊断测试)《中国大能手》是央视推出的一档大型职业技能挑战赛类节目,旨在通过该节目,在全社会传播和弘扬“劳动光荣、技能宝贵、创造伟大”的时代风尚.某公司准备派出选手代表公司参加《中国大能手》职业技
能挑战赛.经过层层选拔,最后集中在甲、乙两位选手在一项关键技能的区分上,选手完成该项挑战的时间越少越好.已知这两位选手在15次挑战训练中,完成该项关键技能挑战所用的时间t(单位:秒)及挑战失败(用“×”表示)的情况如下表:序号
x123456789101112131415t甲×9693×92×9086××8380787775t乙×95×93×92×8883×8280807473据上表中的数据,应用统计软件得下表:均值/秒方差线性回归方程甲8550.2t^甲=-1.59x+99.28乙8454t^乙=-1.73x+100.
25(1)根据上述回归方程,预测甲、乙分别在下一次完成该项关键技能挑战所用的时间;(2)若该公司只有一个参赛名额,根据以上信息,判断哪位选手代表公司参加职业技能挑战赛更合适?请说明你的理由.【跟踪训练3-1】甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则()A.
甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差【跟踪训练3-2】甲、乙两人参加某体育项目训练,近期的五次测试成绩(单位:分
)如图所示:(1)分别求出甲、乙两人成绩的平均数与方差;(2)根据(1)的结果,对两人的成绩作出评价.【跟踪训练3-3】(2019·福建五校第二次联考)甲、乙、丙三人去某地务工,其工作受天气影响,雨天不能出工,晴天才能出工.其计酬方式有两种,方式一:雨天没收入,晴天出
工每天250元;方式二:雨天每天120元,晴天出工每天200元.三人要选择其中一种计酬方式,并打算在下个月(30天)内的晴天都出工,为此三人作了一些调查,甲以去年此月的下雨天数(10天)为依据作出选择;乙和丙在分析了当地近9年此月的下雨天数(n)的频数分布表(见下表)后,乙以频率最大的n值为依
据作出选择,丙以n的平均值为依据作出选择.n8910111213频数312021(1)试判断甲、乙、丙选择的计酬方式,并说明理由;(2)根据统计范围的大小,你觉得三人中谁的依据更有指导意义?(3)以频率作为概率,求未来三
年中恰有两年此月下雨不超过11天的概率.【名师指导】利用样本的数字特征解决优化决策问题的依据(1)平均数反映了数据取值的平均水平;标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定.(2)用样本估计
总体就是利用样本的数字特征来描述总体的数字特征.