山东省枣庄市2022届高三下学期高考适应性练习(三模)数学答案

PDF
  • 阅读 4 次
  • 下载 0 次
  • 页数 7 页
  • 大小 433.451 KB
  • 2025-01-02 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【管理员店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
山东省枣庄市2022届高三下学期高考适应性练习(三模)数学答案
可在后台配置第一页与第二页中间广告代码
山东省枣庄市2022届高三下学期高考适应性练习(三模)数学答案
可在后台配置第二页与第三页中间广告代码
山东省枣庄市2022届高三下学期高考适应性练习(三模)数学答案
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的3 已有4人购买 付费阅读2.40 元
/ 7
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】山东省枣庄市2022届高三下学期高考适应性练习(三模)数学答案.pdf,共(7)页,433.451 KB,由管理员店铺上传

转载请保留链接:https://www.doc5u.com/view-4a42c7261355aa016d38326d23f05fb1.html

以下为本文档部分文字说明:

高三数学参考答案(第1页,共6页)2022年高考适应性练习(一)数学参考答案一、选择题ABDCCACD二、选择题9.BCD10.AC11.ABD12.CD三、填空题13.74−14.3415.732+16.168962+四、解答题17.解:(1)由4,1,nnaS+成等比数列,得2(1)4nna

S+=,·····································1分即2214nnnaaS++=,*n∈N.①当1n=时,211(1)4aa+=,解得11a=.········································

··············2分当2n≥时,2111214nnnaaS−−−++=.②①-②得,2211224nnnnnaaaaa−−−+−=,整理得11()(2)0nnnnaaaa−−+−−=.因为{}na为正项数列,所以10nn

aa−+>,所以12nnaa−−=,·························4分即数列{}na是以1为首项、2为公差的等差数列.所以21nan=−.······························

·······················································5分(2)由(1)知,2nSn=.·················································

·····························6分所以21441111()(21)(21)22121nnnnSnbaannnn+===+−−+−+.························

······8分所以123nnTbbbb=++++11111111[(1)()()()]2335572121nnn=+×−+−+−++−−+11242nn=+−+.············································

······································10分高三数学参考答案(第2页,共6页)B1D1C1DCABA1P18.解:(1)因为cos3sinaCaCbc+=+,由正弦定理得,sincos3sinsinsinsinACACBC+=+.··

··························2分因为π()BAC=−+,所以sinsin()sincoscossinBACACAC=+=+,代入上式得,3sinsincossinsinACACC=+.·············

····························3分因为(0,π)C∈,所以sin0C≠,所以上式可化为3sincos1AA−=,···················································

······4分即π1sin()62A−=.因为(0,π)A∈,所以ππ5π(,)666A−∈−,所以ππ66A−=,所以π3A=.········································

····················································6分(2)在ABC∆中,由余弦定理得:22232232cos73aπ=+−××=,即7a=.············································8分所以22

27497cos214272acbBac+−+−===××,所以321sin14B=.················9分因为角A的平分线交BC于M,则23BMABMCAC==,所以275BM=.·······10分在ABM∆中,由正弦定理得sinsinBMAMBAMB=∠,即27142532

1AM⋅×=,所以635AM=.···············································································12分19.解:(1)证明:连结BD.

因为1AD⊥面ABCD,AD⊂面ABCD,所以1ADAD⊥.····························1分又在ADB∆中,2AB=,1AD=,60DAB∠=,由余弦定理得22221221cos603BD=+−×××=,即3BD=,由勾

股定理得90ADB∠=,即ADDB⊥.···············3分因为1ADDBD=,所以AD⊥面1ABD.··············4分又1AB⊂面1ABD,所以1ADAB⊥.···················

·····································5分高三数学参考答案(第3页,共6页)(2)由(1)知,1,,DADBDA两两垂直,以D为坐标原点,分别以向量1,,DADBDA

的方向为,,xyz轴正向,建立如图所示的空间直角坐标系Dxyz−.····························6分则(0,0,0)D,(1,0,0)A,(0,3,0)B,1(0,0,3)A,1(2,3,3)C−.所以1(0,3,3)AB

=−,1(2,3,3)DC=−,设1(01)DPDCλλ=<<,则1(2,3,3)DPDCλλλλ==−,即(2,3,3)Pλλλ−.·············

················7分所以1(2,3,33)APλλλ=−−.设111(,,)xyz=n为平面1APB的一个法向量,则1100ABAP==nn,即1111133023(33)0

yzxyzλλλ−=−++−=,令12zλ=,则12yλ=,1233xλ=−,取(233,2,2)λλλ=−n.···········8分因为DB⊥平面11AADD,所以(0,1,0)=m为平面11AADD的一个法向量.·········9分设面1APB与

面11AADD的夹角为α,则22||22cos||||3122012320λαλλλλ===⋅−+−+nmnm,01λ<<.············10分此时当12λ=,即12λ=时,cosα取得最大值,·········································1

1分因此111022DPDC==.········································································12分20.解:(1)事件A=“甲平台日销售量不低于8件”,则()PA=26241031005++=

.······································································1分设事件B=“从甲平台所有销售数据中随机抽取3天的日销售量,其

中至少有2天日销售量不低于8件”,则223333323()()()555PBCC=+·····································································

3分81125=.······················································································4分(2)设甲平台日销售收入为1Y,

则1Y所有可能的取值为6240,7270,8300,9330,10360.aaaaa−−−−−··········5分1Y的分布列为zyxPA1BACDC1D1B1高三数学参考答案(第4页,共6页)1

Y6240a−7270a−8300a−9330a−10360a−P1410026100261002410010100因此1142626()(6240)(7270)(8300)100100100EYaaa=−×+−×+−×2410(9330)(10360)100100

aa+−×+−×·······································6分7.9297a=−····························································

···············7分设乙平台日销售收入为2Y,则2Y所有可能取值为6240,7280,8320,9355,10390.aaaaa−−−−−··············8分2Y的分布列为2Y6240a−7280a−8320a−9355a−10390a−P10100251003510

02010010100因此2102535()(6240)(7280)(8320)100100100EYaaa=−×+−×+−×2010(9355)(10390)100100aa+−×+−×···································

····9分7.95316a=−········································································10分于是21()()0.0519EYEYa−=−.令0

.05190a−≥,得380a≥.所以当300380a≤<时,选择甲平台;当380a=时,甲、乙平台均可;当380500a<≤时,选择乙平台.12分21.解:(1)因为双曲线的实轴长为2,所以1a=.又因为点(7,

1)−在C上,所以22171b−=,所以216b=.所以双曲线C的方程为2261xy−=.····························································2分因为抛物线的准线为1y=−,所以抛物线E的方程为24

xy=.·························4分(2)设00(,)Pxy,直线PA方程为010()yykxx−=−,将其与抛物线方程24xy=联立,得2101044()0xkxykx−−−=,因为直线PA与抛物线相切,所以210101616()0kykx∆=+−=,整

理得211000kkxy−+=,①············5分点A的横坐标12Axk=,211(2,)Akk.同理,直线PB方程为020()yykxx−=−,有222000kkxy−+=,②高三数学参考

答案(第5页,共6页)点B的横坐标22Bxk=,222(2,)Bkk.由①②知,12,kk是方程2000kkxy−+=的两个根,所以120kkx+=,120kky=,··························

··········································6分由211(2,)Akk,222(2,)Bkk,得22121212222ABkkkkkkk−+==−.直线AB方程为12122kkyxkk+=−,即002xyxy=−.···

·································7分()2222201201212000||12244444xABkkxkkkkxxy=+−=+⋅+−=+⋅−···8分点00(,)Pxy到直线AB的距离2002044xydx−=+,所以()3200

11||422PABSABdxy∆=⋅=−.····················································9分因为点00(,)Pxy在双曲线上,所以22006

1xy=+,所以()320016412APBSyy∆=−+,0y∈R.················································10分当013y=时,APBS∆取得最小值318,故PAB∆面积的取值范围为3[,)18+∞.····12分22.解

:(1)2()()2e2xgxfxax′==−,所以2()4e2xgxa′=−.·························2分当0a≤时,()0gx′<,所以()gx在(,)−∞+∞上单减,又当x→−∞时,()g

x→+∞,当x→+∞时,()gx→−∞,由零点存在定理,此时()gx存在唯一零点;···············3分当0a>时,令2()4e20xgxa′=−>,得ln22ax>−,故当ln2(,)2ax∈−+

∞,()0gx′>,()gx单增.同理,ln2(,)2ax∈−∞−时,()gx单减,所以min()gx=ln2()1ln22aga−=+.································

···················································4分又当x→−∞,()gx→+∞,当x→+∞,()gx→+∞,所以当ln2()02ag−<,即102ea<<时,由零点存在定理()gx存在两个零点;当12e

a=时,()gx存在一个零点;当12ea>时,()gx在(,)−∞+∞无零点.·····························································5分高三数学参

考答案(第6页,共6页)综上,当0a≤或12ea=时,()gx存在1个零点;当102ea<<时,()gx存在2个零点;当12ea>时,()fx无零点.·······························································

·····6分(2)由(1)知,()fx的极值点为12,xx,即方程2()2e20xgxax=−=的两根,······7分且102ea<<,所以121e0xax=>,222e0xax=>.两式相除并取对数得22112()ln0xxxx−=>.由1212e

e2xxxxλ+≥−,得22112121e2()()lne2xxxxxxxxλ−+≥−,·················8分所以2112212e2()e2e2lnxxxxxxλ+−−−≤.···················································

···········9分令211xtx=>,令2e12()e2e2()(1)lnttthtt+−−−=>,则()htλ≤恒成立.2222e2e()ln()e2e2e2()2lnttttthtt+−+−−−−′=,令22e2e()()ln()e2e2e2ttttt

ϕ=+−+−−−−,则e12()2lne2e2tttttϕ′=−+−−−,因为2e1()2ln1e2tttϕ′′=+−−在(1,)+∞单增,且(1)0ϕ′′<,(e)0ϕ′′>,所以0(1,e)t∃∈,使得0()0tϕ′′

=,且当0(1,)tt∈时,()0tϕ′′<,()tϕ′单减;0(,)tt∈+∞时,()0tϕ′′>,()tϕ′单增.又(1)0ϕ′=,(e)0ϕ′>,由零点存在定理,存在1(1,e)t∈,当1(1,)tt∈时,(t)0ϕ′<,()tϕ单减,当1(,)tt∈+∞时,(t)0ϕ′>,

()tϕ单增.又(1)(e)0ϕϕ==,所以当(1,e)x∈时,()0tϕ<,()ht单减,当(e,+)x∈∞时,()0tϕ>,()ht单增.···········································································

······················11分所以当et=时,2min2(e1)()(e)e2hth−==−,λ的取值范围为22(e1)e2λ−≤−.······12分获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com

管理员店铺
管理员店铺
管理员店铺
  • 文档 474179
  • 被下载 24
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?