【文档说明】广东省华南师范大学附属中学2025届高三综合测试(一)数学答案.pdf,共(8)页,582.056 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-489a62ac78553d9247a4ca454db02d0e.html
以下为本文档部分文字说明:
第1页(共8页)2025届高三综合测试(一)数学参考答案一、选择题12345678BADDAACC91011ABCBCDBCD三、填空题:本题共3小题,每小题5分,共15分。12.8.13.4051.14.
108.【详解】因为()e(22)()xfxxfx′=−+,所以2()ee()()22[]eexxxxfxfxfxx′−′=−=,从而2()2exfxxxc=−+,即2()e(2)xfxxxc=−+,其中c为常数,又(0)1fc==,故2()e(21)xfxxx=−+,则2()(1
)exfxx′=−,当(),1x∈−∞−时,()0fx′>,()fx为增函数;当()1,1x∈−时,()0fx′<,()fx为减函数;当()1,x∈+∞时,()0fx′>,()fx为增函数,所以当(1)(1)fkf<<−时,即40ek<<时,直线yk=与=()yfx的图像有三个不同的交点,即
方程()=fxk有三个不同的解.故选:C.10.【解答】解:因为函数()fx的定义域为R,且22()()()()fxyfxyfxfy+⋅−=−,f(1)2=,(1)yfx=+为偶函数,令0xy==,得(0)0f=,再令0x=,则22()()(0)()fy
fyffy−=−,显然()fy不恒为零,所以()()fyfy−=−,即()fx为奇函数,B正确;所以(1)(1)(1)fxfxfx+=−+=−−,所以(2)()fxfx+=−,所以(4)(2)()fxfxfx+=−+=,即()fx的周期为4,则f(3)(1)ff=−=−(1)2=−,A错误;(0
2)(0)0ff+=−=,C正确;由A,B,C可知,f(1)2=,f(2)0=,f(3)2=−,f(4)(0)0f==,且()fx的周期为4,所以20241()506[kfkf==×∑(1)f+(2)f+(3)f+(4)]0=,D正确.故选:BCD.11.【解答】解:因为2()fxln
x=,所以2()lnxfxx′=,所以经过(ix,())(1ifxi=,2)的切线方程为22()iiiilnxyxxlnxx=−+,由切线过点(,)Pab知,22()(1,2)iiiilnxbaxlnxix=
−+=,{#{QQABBYIAggAoAJJAABhCQwGYCkOQkAACCSgORBAAoAIBgBNABAA=}#}第2页(共8页)令22()2alnxgxlnxlnxbx=+−−,则()gx恰有
两个零点1x,2x,且22(1)()()lnxxagxx−−′=,当ae=时,()0gx′,则()gx在(0,)+∞单调递增,不可能有两个零点;当ae≠时,则若ae>,当0xe<<或xa>时()0gx′>,当exa<<时()0gx′<,则()gx在(0,)e和(,)a+∞上单调递增,在(,)ea
上单调递减,若0ae<<,当0xa<<或xe>时()0gx′>,当axe<<时()0gx′<,则()gx在(0,)a和(,)e+∞上单调递增,在(,)ae上单调递减,故g(e)0=或g(a)0=时,函数()gx才可能有两个零点,又g(a)20l
nab=−≠,故g(e)0=,此时显然有两条切线,所以2()10agebe=−−=,即2(1)aeb=+,当12b=时,34aee=<,故A错误,B正确;由上述分析,1{ex∈,2}x,当ae>时,1xea=<,()gx在(0,)e和
(,)a+∞上单调递增,在(,)ea上单调递减,示意图如图.显然1xa<,且222222222()22(1)0alnxafxblnxblnxlnxxx−=−=−=−>,所以2()fxb>,当0ae<<
时,2xea=>,()gx在(0,)a和(,)e+∞上单调递增,在(,)ae上单调递减,示意图如图.显然212,()()1xafxfelne<===,由2(1)aeb=+,得21abe=−,所以22111aebee=−<−=,即2()fxb>,综上,12()xafxb<>
,故选项C和D正确.故选:BCD.三、填空题:本题共3小题,每小题5分,共15分。12.【解答】解:由a表示数学课,b表示语文课,c表示英语课,按上午的第1、2、3、4、5节课排列,可得若A班排课为aabbc,则B班排课为bbcaa,若A班排课为bbaac,则B
班排课为aacbb,若A班排课为aacbb,则B班排课为bbaac,或B班排课为cbbaa,若A班排课为bbcaa,则B班排课为aabbc,或B班排课为caabb,若A班排课为cbbaa,则B班排课为aa
cbb,若A班排课为caabb,则B班排课为bbcaa,则共有8种不同的排课方式.故答案为:8.13.【解答】解:根据题意,因为函数(2)1yfx=+−为定义在R上的奇函数,{#{QQABBYIAggAoAJJAABhCQwGYCkOQkAACCSgORBAAoAIBgBNABAA=
}#}第3页(共8页)所以函数()fx的图象关于(2,1)中心对称,则有()(4)2fxfx+−=,且f(2)1=,故(2024)[(2023)(2027)][(2022)(2026)][fifffff−=−++−
++…+(1)f+(3)]f+(2)2025214051=×+=.故答案为:4051.14.解:固定每个{1,2,,100}n∈,考察路灯nL.根据题意,nL被第k名行人改变开关状态,当且仅当k为n的正约
数(注意n的正约数都不超过100,故每个正约数均可对应到某一名行人).所以nL最终为开,当且仅当n的正约数个数为奇数.以下证明这等价于n为平方数.事实上,n的每个正约数d均可对应到正约数ndd′=,其中,d对
应到自身当且仅当ndd=,即dn=.这意味着,n的正约数个数为奇数当且仅当n是n的正约数,即n为平方数.因此,当所有行人都经过后,恰好那些下标为平方数1,4,9,,100的路灯是开着的,所以共有10个路灯处于开着状态.四、解答题:本大题共5小题,共77分.解答应写出文字说明、
证明过程或演算步骤.15.【解答】解:(1)因为2sin2cBb=,由正弦定理可得2sinsin2sinCBB=,···············1分在ABC∆中,sin0B>,···············2分可得2sin2C=,而(0,)Cπ∈,···············3分可
得4Cπ=或34Cπ=;···············5分(少一个解扣一分)(2)因为tantantanABC=+,由恒等式tantantantantantanABCABC++=⋅⋅,得2tantantantanAAB
C=,得tantan2BC=,···············7分所以只可能是tan1C=,tan2B=,···············8分此时tan3A=,···············9分所以310sin10A=,25sin5B=,···········
····11分(每求对一个给1分)所以252sin4510425sin5331031010BabA×⋅===×=,···············12分所以114224sin222323ABCSabC∆==××⋅=.····
···········13分(注:分类讨论代入C,然后消元求解,自行给评分标准即可){#{QQABBYIAggAoAJJAABhCQwGYCkOQkAACCSgORBAAoAIBgBNABAA=}#}第4页(共8页)16.【解答】(1)证明:连接EC交
BD于N,由E是AD的中点可得112DEBC==,则DEN∆与BCN∆相似,所以12ENNC=,···············1分又12PMMC=,···············2分∴PMENMCNC=···············3分∴
//MNPE,···············4分又MN⊂平面BDM,PE⊂/平面BDM···············5分∴//PE平面BDM;···············6分(2)解:如图,建立空间直角坐标系,(0E,0,0)
,(1A,0,0),(1D−,0,0),(1B,2,0),(1C−,2,0),(0P,0,2),···············7分1122(1,2,2),(,,)3333PCPMPC=−−==−−,则124(,,
)333M−,···············8分设平面AMB的法向量为1111(,,)nxyz=,由424(0,2,0),(,,)333ABAM==−,则1100ABnAMn⋅=⋅=
,即1111204240333yxyz=−++=,···············9分取11x=,可得1(1,0,1)n=,···············10分由(1)可取平面BDM的法向量为2(1,1,0)n=−
,···············12分所以1|cosn<,12212||1|2||||nnnnn⋅>==,···············14分(公式给1分,代入求解给1分)即平面AMB与平面BDM的夹角余弦值为12,所以平面AMB与平面BDM的夹角为3
π.···············15分17.【解答】解:(1)补全列联表如下:{#{QQABBYIAggAoAJJAABhCQwGYCkOQkAACCSgORBAAoAIBgBNABAA=}#}第5页(共8页)性别速度合计快慢男生6535100女生
4555100合计11090200则22200(65553545)8008.086.6351001001109099K×−×==≈>×××,···············4分(第一个等号2分,第二个等号1分,判断大于1分)所以有99%的把握,认为学生性别与绳子打结速度快慢有关;·····
··········5分(2)()i易知X的所有可能取值为1,2,3,此时1142222642338(1)15CCPXCCCA===,···············6分132226423322(2)5CPXCCCA===,···············7分2226423311(3)15P
XCCCA===,···············8分则X的分布列为:X123P815615115···············9分所以86123()12315151515EX=×+×+×=;···············10分()ii证明
:不妨令绳头编号为1,2,3,4,…,2n,可以与绳头1打结形成一个圆的绳头除了1,2外还有22n−种可能,假设绳头1与绳头3打结,那么相当于对剩下1n−根绳子进行打结,不妨设*()nnN∈根绳子打结后可成圆的种数为na,那么经过一次打结后,剩下1n−根绳子打结后可成圆的种数为1n
a−,···············11分{#{QQABBYIAggAoAJJAABhCQwGYCkOQkAACCSgORBAAoAIBgBNABAA=}#}第6页(共8页)所以1(22)nnana−=−,2n≥,···············12分即
122nnana−=−,1224nnana−−=−,,…,212aa=,以上各式累乘得11(22)(24)22(1)!nnannna−=−−…=−,易知11a=,所以12(1)!nnan−=⋅−,···············13分另一方面,对2n个绳头
进行任意2个绳头打结,总共有22222222(21)(22)21(2)!!2!2!nnnnCCCnnnnNnnn−…−−…×===,···············14分则1212(1)!2!(1)!(2)!(2)!2!nnnnannnPnNnn−−
⋅−⋅−===⋅.···············15分18.【解答】解:(1)设C上任意一点0(Tx,0)y,00x<,光线从点N至点(2,0)的光程为1δ,光线穿过凸透镜后从T点折射到点(2,0)的光程为2δ,则2211345δ=×+=,··
·············1分2220002(2)1(2)xxyδ=×++×−+,···············2分由题意得12δδ=,则220002(2)(2)5xxy++−+=,···············3分化简得2200012(2)xxy−=−+,·············
··4分所以2220000014444xxxxy+−=+−+,所以22013yx−=.···············5分令00y=,得01x=−,所以C为双曲线的一部分,解析式为221(21)3yxx−=−−.·····
··········7分(缺少范围扣1分)(2)由题意知22:13yFx−=.设(0,)Hn,(Qm,0)(1)m≠±,(AAx,)Ay,(BBx,)By,{#{QQABBYIAggAoAJJAABhCQwGYCkOQkAACCSgORBAAoAIBgBNABAA=}#}第7页(共8页)
则(,)HQmn=−,(,)AAQAxmy=−,(,)BBQBxmy=−,···············8分因为12HQkQAkQB==,所以11()AAmkxmnky=−−=,22()BBmkxmnky=−−=,············
···9分由题意知10k≠,20k≠,得111AAmkmxknyk+==−,222BBmkmxknyk+==−,即111(,)mkmnAkk+−,222(,)mkmnBkk+−
.···············10分将点A的坐标代入2213yx−=,得22222112211213mkmkmnkk++−=,···············11分化简整理得2222211(1)2()03nmkmkm−++−=.·············
··12分同理可得2222222(1)2()03nmkmkm−++−=,···············13分所以1k与2k为方程22222(1)2()03nmxmxm−++−=的两个解,··········
·····14分所以212221mkkm+=−−.···············15分由题知1283kk+=−,所以222813mm−=−−,解得2m=±,···············16分所以点Q的坐标可能为(2,0)或(2,0)−.····
···········17分19.【解答】解:(Ⅰ)当12a=时,()22xxexfxe=+,···············1分∴2()1()2xxexfxe+−′=,··············2分(0)1f∴′=.···············3分(Ⅱ)证明:当
1a=,1x时,()2xxexfxe=+,∴2()22()2xxexfxe+−′=,···············4分令()1xgxex=−+,()1xgxe′=−,当0x>时,()0gx′>,()gx单调递增,{#{QQABBYIAggAoAJJAABhCQwGYCkOQkA
ACCSgORBAAoAIBgBNABAA=}#}第8页(共8页)当0x<时,()0gx′<,()gx单调递减,()(0)0gxg∴=,1xex∴+,···············5分22()21xexx∴++,()0fx∴′>,···············7分()fx∴在[1,)
+∞上单调递增,···············8分∴133()(1)cos222efxfxe=+>,得证.···············9分(Ⅲ)当2a,2()(1)2xxegxaeax=−++−,()()(1)xxgxeae′=−−−,···············10分当(
0,)xlna∈时,()0gx′>,当(x∈−∞,0)(lna∪,)+∞时,()0gx′<,()gx∴在(0,)lna上单调递增,在(,0)−∞,(,)lna+∞上单调递减,···············11分由题意,()()gmgn′=
′得到1mneea+=+,···············12分21()()(1)()2mngmgnaeamn++=++−+,···············13分由12mnmneeaee+=+>得到2(1)04
mnae++<<,···············14分记2(1)(0,)4mnate++=∈,则21()()()(1)2gmgnFtatalnt+==++−,···············15分()1aFtt′=−,当
(0,)ta∈时,()0Ft′<,当2(1)(,)4ata+∈时,()0Ft′>,()Ft∴在(0,)a上单调递减,在2(1)(,)4aa+上单调递增.∴2(1)()ln2ahaaaa+=+−···············1
6分∴当2a时,()10haalna′=−+>,∴()ha为增函数,∴13(2)222minhhln==−.···············17分{#{QQABBYIAggAoAJJAABhCQwGYCkOQkAACCSgORBAAoAIBg
BNABAA=}#}