2024届高考二轮复习文科数学试题(老高考旧教材) 课后提升练2 高考客观题速解技巧 Word版含答案

DOC
  • 阅读 4 次
  • 下载 0 次
  • 页数 6 页
  • 大小 244.191 KB
  • 2024-10-15 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
2024届高考二轮复习文科数学试题(老高考旧教材) 课后提升练2 高考客观题速解技巧 Word版含答案
可在后台配置第一页与第二页中间广告代码
2024届高考二轮复习文科数学试题(老高考旧教材) 课后提升练2 高考客观题速解技巧 Word版含答案
可在后台配置第二页与第三页中间广告代码
2024届高考二轮复习文科数学试题(老高考旧教材) 课后提升练2 高考客观题速解技巧 Word版含答案
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的3 已有4人购买 付费阅读2.40 元
/ 6
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】2024届高考二轮复习文科数学试题(老高考旧教材) 课后提升练2 高考客观题速解技巧 Word版含答案.docx,共(6)页,244.191 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-46b3e0d05efb09ac0a5258429b8e0230.html

以下为本文档部分文字说明:

课后提升练2高考客观题速解技巧一、选择题1.已知sin(θ-π12)=13,则sin(2θ+π3)=()A.-29B.29C.-79D.792.(2023北京丰台一模)设a,b,c∈R,且a>b,则()A.1𝑎<1𝑏B.a2>b2

C.a-c>b-cD.ac>bc3.在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等差数列,则cos𝐴+cos𝐶1+cos𝐴cos𝐶等于()A.35B.45C.34D.43

4.(2023河南百师联盟联考四)函数f(x)=cosx+sin2x的图象可能是()5.(2023四川眉山一模)a=1.02,b=e0.025,c=0.9+2sin0.06,则a,b,c的大小关系是()A.c<b<aB.a<b<cC.b<c<

aD.c<a<b6.若2x-2y<3-x-3-y,则()A.ln(y-x+1)>0B.ln(y-x+1)<0C.ln|x-y|>0D.ln|x-y|<07.(2023山东滨州一模)已知a=20183+120184+1,b=20184+120185+1,则a

,b之间的大小关系是()A.a>bB.a<bC.a=bD.无法比较8.(2023上海复旦大学附中开学考试)设点O是锐角三角形ABC外接圆的圆心,它到三边a,b,c的距离分别是k,m,n,则()A.k∶m∶n=a∶b∶cB.k∶

m∶n=1𝑎∶1𝑏∶1𝑐C.k∶m∶n=sinA∶sinB∶sinCD.k∶m∶n=cosA∶cosB∶cosC9.已知x,y∈R,满足x2+2xy+4y2=6,则z=x2+4y2的取值范围为()A.[4,12]B.[4,+∞)C.[0,

6]D.[4,6]10.(原创)已知正实数x,y,且满足xy=3,则𝑥3+27𝑦3𝑥2+9𝑦2+18的最小值是()A.1B.32C.3D.211.已知ω>0,函数f(x)=sinωx-π6在π6,π3上单调递

增,且对任意x∈π8,π4,都有f(x)≥0,则ω的取值范围为()A.43,2B.43,2C.[1,3]D.(1,3)12.已知e是自然对数的底数,π是圆周率,则e3,3e,3π,π3的大小关系是()A.3π>π3>e3

>3eB.3π>π3>3e>e3C.π3>3π>3e>e3D.π3>3π>e3>3e13.(2023陕西商洛一模)若函数f(x)满足:∀a,b∈R,3f2𝑎+𝑏3=2f(a)+f(b),且f(1)=1

,f(4)=10,则f(985)=()A.2953B.2956C.2957D.296014.(2023江西九江二模)设a=sin12,b=√e-1,c=ln32,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.b

>c>aD.c>b>a15.已知抛物线有一性质:“过抛物线y2=2px(p>0)的焦点F的弦AB满足|AF|+|BF|=2𝑝|AF|·|BF|.”那么类比抛物线,对于椭圆𝑥24+𝑦23=1,设F2

为其右焦点,过F2的弦与椭圆交于A,B两点,若存在实数λ,使得|AF2|+|BF2|=λ|AF2|·|BF2|成立,则实数λ=()A.23B.43C.13D.32二、填空题16.已知|𝑂𝐴⃗⃗⃗⃗⃗|=|𝐴𝐵⃗⃗⃗⃗⃗|=2,|𝑂𝐵⃗⃗

⃗⃗⃗|=1,则|𝑂𝐴⃗⃗⃗⃗⃗+3𝑂𝐵⃗⃗⃗⃗⃗|=.17.已知正方形ABCD的边长为1,点E是AB边上的动点,则𝐷𝐸⃗⃗⃗⃗⃗·𝐶𝐵⃗⃗⃗⃗⃗的值为;𝐷𝐸⃗⃗⃗⃗⃗·𝐷𝐶⃗⃗⃗⃗⃗的最小值为.18.(202

3山东泰安一模)已知函数f(x)={𝑥2+4𝑎,𝑥>0,1+log𝑎|𝑥-1|,𝑥≤0(a>0且a≠1)在R上单调递增,且关于x的方程|f(x)|=x+3恰有两个不相等的实数解,则a的取值范围是.19.(2020江苏,13)在△ABC中,AB=4,

AC=3,∠BAC=90°,D在边BC上,延长AD到P,使得AP=9,若𝑃𝐴⃗⃗⃗⃗⃗=m𝑃𝐵⃗⃗⃗⃗⃗+32-m𝑃𝐶⃗⃗⃗⃗⃗(m为常数),则CD的长度是.20.已知函数f(x)=sinx+cosx+tanx+1tan𝑥+1

cos𝑥+1sin𝑥,则函数f(x)的值域为.课后提升练2高考客观题速解技巧1.D解析(换元法)设α=θ-π12,则θ=α+π12,∴sinα=13,sin2θ+π3=sin2α+π12+π3=sin2α+π2=cos2α=1-2s

in2α=79.故选D.2.C解析(特值法)选项A,取a=2,b=-1,则1𝑎<1𝑏不成立;选项B,取a=-1,b=-2,则a2>b2不成立;选项C,∵a>b,∴a-c>b-c,正确;选项D,取c≤0,∵a>b,∴ac≤bc,因此D不正确.故选C.3.B解析(方法一)由题意

可取特殊值a=3,b=4,c=5,则cosA=45,cosC=0,cos𝐴+cos𝐶1+cos𝐴cos𝐶=45.故选B.(方法二)由题意可取特殊角A=B=C=60°,cosA=cosC=12,cos𝐴+cos𝐶1+cos𝐴cos𝐶=45.故选B.4.D解析

(排除法)f(x)的定义域为R,由f(-x)=cosx-sin2x≠±f(x),得f(x)为非奇非偶函数,故排除选项A,B;fπ2=cosπ2+sinπ=0,当x∈0,π2时,f(x)>0,当x∈π2,π时,f(x)<0,

所以排除C,故选D.5.D解析(转化法)由不等式ex≥x+1,当且仅当x=0时等号成立,则b=e0.025>e0.02≥0.02+1=1.02=a,当x∈0,π2时,sinx<x,得c=0.9+2sin0.06<

0.9+2×0.06=1.02=a,∴c<a<b,故选D.6.A解析∵2x-2y<3-x-3-y,∴2x-3-x<2y-3-y.构造函数f(t)=2t-3-t,易知函数f(t)在R上为增函数.∵f(x)<f(y),∴x<y,∴y-x>0,∴y-x+1>1,∴ln(y-x+1)>ln1

=0.故选A.7.A解析(构造法与转化法)设f(x)=2018x+1,则a=𝑓(3)𝑓(4),b=𝑓(4)𝑓(5),∴1-a=𝑓(4)-𝑓(3)𝑓(4)=20184-2018320184+1=2017×2018320184+1=2017×2018420185+2018,1-b=𝑓(

5)-𝑓(4)𝑓(5)=20185-2018420185+1=2017×2018420185+1,∵20185+2018>20185+1,∴1-a<1-b,即a>b.故选A.8.D解析(方法一排除法)对于选项A,C,由正弦定理知它

们是等价的,故排除选项A,C;对于选项B,k∶m∶n=1𝑎∶1𝑏∶1𝑐⇔𝑘1𝑎=𝑚1𝑏=𝑛1𝑐⇔ka=mb=nc⇔S△OBC=S△OAC=S△OAB,又因为每个三角形的两个边都是半径,则三个三角形全等,则四个选项都正确,故B错误,故选D.(方法二极端位置

法)当锐角△ABC的角C无限趋近π2时,其外接圆的圆心O到边AB的距离n无限趋近0,只有当角的余弦能满足当C无限趋近π2时,圆心到接近直角边的距离n无限趋近0,故选D.(方法三直接法)如图,圆心角∠BOC=2∠A,设D为

BC的中点,则∠BOD=∠A,在Rt△BOD中,OD=k=RcosA,同理有m=RcosB,n=RcosC,∴k∶m∶n=cosA∶cosB∶cosC,故选D.9.A解析(换元法与转化法)由x2+2xy+4y2=6,得(x+y

)2+(√3y)2=6,令x+y=√6cosθ,√3y=√6sinθ,θ∈[0,2π],所以y=√2sinθ,x=√6cosθ-√2sinθ,z=x2+4y2=(√6cosθ-√2sinθ)2+4(√2sinθ)2=6+4sin

2θ-2√3sin2θ=2(1-cos2θ)-2√3sin2θ+6=8-4sin2θ+π6,因为sin2θ+π6∈[-1,1],所以z∈[4,12].10.B解析(换元法与构造法)由𝑥3+27𝑦3𝑥2+9𝑦2+18=𝑥3+(3𝑦)3(𝑥+3𝑦)2-6𝑥𝑦+18=(𝑥+3�

�)[(𝑥+3𝑦)2-9𝑥𝑦](𝑥+3𝑦)2-6𝑥𝑦+18=(𝑥+3𝑦)[(𝑥+3𝑦)2-27](𝑥+3𝑦)2,令t=x+3y≥2√3𝑥𝑦=6,当且仅当x=3y=3时等号成立,则𝑥3+27𝑦3𝑥2+9𝑦2+18=𝑡(𝑡2-27)𝑡2=t-27𝑡

,设f(t)=t-27𝑡,又因为函数f(t)=t-27𝑡在[6,+∞)内单调递增,所以f(t)≥6-276=32.故选B.11.A解析当ω=2时,易知f(x)在π6,π3上单调递增,且对任意x∈π8,π4,都有f(x)≥0,成立,排除选项B;当ω=52时,易知f(x)

在π6,π3上不单调,排除选项CD.故选A.12.A解析因为y=3x,y=x3在R上是增函数,所以3π>3e,π3>e3,设函数f(x)=x-elnx,则f'(x)=1-e𝑥,当x>e时,f'(x)>0,则f(x)是增

函数,又f(e)=0,所以f(3)=3-eln3>0,即3>eln3=ln3e,则e3>3e,设函数h(x)=ln𝑥𝑥,则h'(x)=1-ln𝑥𝑥2,当x>e时,h'(x)<0,则h(x)是减函数,所以h

(π)<h(3),即lnππ<ln33,即3lnπ<πln3,则π3<3π,所以3π>π3>e3>3e.故选A.13.A解析(方法一)令2𝑎+𝑏3=1,则b=3-2a,所以2f(a)+f(3-2a)=3f(1)=3,令2𝑎+𝑏3=4,则b=12-

2a,2f(a)+f(12-2a)=3f(4)=30,两式相减得f(12-2a)-f(3-2a)=27,令n=3-2a,得f(n+9)-f(n)=27,所以f(985)=f(985)-f(976)+f(976)-f(967)+…+f(13)-f(4)+f(

4)=109×27+10=2953.故选A.(方法二)令f(x)=kx+m,易验证满足3f2𝑎+𝑏3=2f(a)+f(b).由f(1)=1,f(4)=10,得{𝑘+𝑚=1,4𝑘+𝑚=10,解得{𝑘=3,𝑚=-2,故f(x)=3x-

2,f(985)=2953.14.B解析(构造法)当x∈(0,1)时,ex-1>x>sinx,∴e12-1>sin12,即b>a,令f(x)=sinx-ln(x+1),则f'(x)=cosx-1𝑥+1,令g(x)=f'(x)=cosx-1𝑥+1,g'(x)=-sin

x+1(𝑥+1)2,易知g'(x)在(0,1)内单调递减,且g'(0)=1>0,g'(1)=14-sin1<0,∴∃x0∈(0,1),使得g'(x)=0,∴当x∈(0,x0)时,g'(x)>0,f'(x)单调递增;当x∈(x0,1)时,

g'(x)<0,f'(x)单调递减.又f'(0)=0,f'(1)=cos1-12>0,∴f'(x)>0,∴f(x)在(0,1)内单调递增,∴f(x)>f(0)=0,即sinx>ln(x+1),令x=12,则a>c.综上,b>a>c,故选B.15.B

解析(方法一特殊位置法)设A(x1,y1),B(x2,y2),由题意知F2(1,0),当直线AB垂直x轴时,|AF2|=|BF2|=𝑏2𝑎=32,则|AF2|+|BF2|=3,|AF2||BF2|

=94,则λ=|𝐴𝐹2|+|𝐵𝐹2||𝐴𝐹2||𝐵𝐹2|=3×49=43.(方法二非特殊位置的解法)当直线AB的斜率存在时,设直线AB的方程为y=k(x-1),由{𝑦=𝑘(𝑥-1)

,𝑥24+𝑦23=1,得(3+4k2)x2-8k2x+4k2-12=0,x1+x2=8𝑘23+4𝑘2,x1x2=4𝑘2-123+4𝑘2,利用焦半径公式可得|AF2|+|BF2|=4-12×8𝑘23+4𝑘

2=12+12𝑘23+4𝑘2,|AF2||BF2|=4-(x1+x2)+14x1x2=4-8𝑘23+4𝑘2+𝑘2-33+4𝑘2=9+9𝑘23+4𝑘2,则λ=|𝐴𝐹2|+|𝐵𝐹2||𝐴𝐹2||𝐵𝐹2|=43.16.4解析

以点O为坐标原点,OB为x轴,作OB的垂线为y轴建立平面直角坐标系,A12,√152,B(1,0),则𝑂𝐴⃗⃗⃗⃗⃗=12,√152,𝑂𝐵⃗⃗⃗⃗⃗=(1,0),∴𝑂𝐴⃗⃗⃗⃗⃗+3𝑂𝐵⃗⃗⃗⃗⃗=72

,√152,|𝑂𝐴⃗⃗⃗⃗⃗+3𝑂𝐵⃗⃗⃗⃗⃗|=√494+154=4.17.10解析如图所示,以B为坐标原点,BC,BA所在直线分别为x轴、y轴建立平面直角坐标系.设E(0,m),0≤m≤1.又正方形边长为1,则𝐷𝐸⃗⃗⃗⃗⃗=(-1,m-1),𝐶𝐵⃗⃗⃗⃗⃗=(-1,0),𝐷

𝐶⃗⃗⃗⃗⃗=(0,-1),故𝐷𝐸⃗⃗⃗⃗⃗·𝐶𝐵⃗⃗⃗⃗⃗=(-1)×(-1)+(m-1)×0=1,𝐷𝐸⃗⃗⃗⃗⃗·𝐷𝐶⃗⃗⃗⃗⃗=-1×0+(-1)·(m-1)=-m+1,∵m∈[0,1],∴𝐷𝐸⃗⃗⃗⃗⃗·𝐷𝐶⃗⃗⃗⃗⃗的最小值为0.18.14,34∪

1316解析∵f(x)是R上的单调递增函数,∴y=1+loga|x-1|在(-∞,0]上单调递增,可得0<a<1,且0+4a≥1+0,即14≤a<1,作出y=|f(x)|和y=x+3的函数草图如图所示,由图象可知|f(

x)|=x+3在(0,+∞)内最多只有一解,可得4a≤3,或x2+4a=x+3,即有Δ=1-4(4a-3)=0,解得14≤a≤34或a=1316.由1+loga|x-1|=0,解得x=1-1𝑎≤-3,即当x≤0时,方程|f(x)|=x+

3有且只有一解,则a的取值范围是14,34∪1316.19.0或185解析(方法一)∵A,D,P三点共线,∴可设𝑃𝐴⃗⃗⃗⃗⃗=λ𝑃𝐷⃗⃗⃗⃗⃗(λ>0),又𝑃𝐴⃗⃗⃗⃗⃗=m𝑃𝐵⃗⃗⃗⃗⃗+32-m𝑃𝐶⃗⃗⃗⃗⃗,∴λ𝑃𝐷⃗⃗⃗⃗⃗=m𝑃𝐵⃗⃗⃗⃗⃗+32-m�

�𝐶⃗⃗⃗⃗⃗,即𝑃𝐷⃗⃗⃗⃗⃗=𝑚𝜆𝑃𝐵⃗⃗⃗⃗⃗+(32-𝑚)𝜆𝑃𝐶⃗⃗⃗⃗⃗,若m≠0且m≠32,则B,D,C三点共线,∴𝑚𝜆+(32-𝑚)𝜆=1,即λ=32,∵AP=9,𝑃𝐴⃗⃗⃗⃗⃗=32�

�𝐷⃗⃗⃗⃗⃗,∴AD=3,又AB=4,AC=3,∠BAC=90°,∴BC=5.设CD=x,∠CDA=θ,则BD=5-x,∠BDA=π-θ.由余弦定理,得cosθ=𝐴𝐷2+𝐶𝐷2-𝐴𝐶22𝐴𝐷·𝐶𝐷=𝑥6

,cos(π-θ)=𝐴𝐷2+𝐵𝐷2-𝐴𝐵22𝐴𝐷·𝐵𝐷=(5-𝑥)2-76(5-𝑥),∵cosθ+cos(π-θ)=0,∴𝑥6+(5-𝑥)2-76(5-𝑥)=0,解得x=185,∴CD的长度为185.当m=0时,𝑃𝐴⃗⃗⃗⃗⃗=32�

�𝐶⃗⃗⃗⃗⃗,C,D重合,此时CD的长度为0,当m=32时,𝑃𝐴⃗⃗⃗⃗⃗=32𝑃𝐵⃗⃗⃗⃗⃗,B,D重合,此时PB=9-4=5,PA=32×5=7.5,不合题意,舍去.故答案为0或185.(方法二)如图

,以A为坐标原点,分别以AB,AC所在直线为x轴、y轴建立平面直角坐标系,则B(4,0),C(0,3).由𝑃𝐴⃗⃗⃗⃗⃗=m𝑃𝐵⃗⃗⃗⃗⃗+32-m𝑃𝐶⃗⃗⃗⃗⃗,得𝑃𝐴⃗⃗⃗⃗⃗=m(𝑃𝐴

⃗⃗⃗⃗⃗+𝐴𝐵⃗⃗⃗⃗⃗)+32-m·(𝑃𝐴⃗⃗⃗⃗⃗+𝐴𝐶⃗⃗⃗⃗⃗),整理得𝑃𝐴⃗⃗⃗⃗⃗=-2m𝐴𝐵⃗⃗⃗⃗⃗+(2m-3)𝐴𝐶⃗⃗⃗⃗⃗=-2m(4,0)+(2m-3)(0,3)=(-8m,6m-9).又AP=9

,所以64m2+(6m-9)2=81,解得m=2725或m=0.当m=0时,𝑃𝐴⃗⃗⃗⃗⃗=(0,-9),此时,C,D重合,CD=0;当m=2725时,直线PA的方程为y=9-6𝑚8𝑚x,直线BC的方程为𝑥4+𝑦3=1,联立两直线方程可得x=83m,y=

3-2m.即D7225,2125,∴CD=√(7225)2+(2125-3)2=185.∴CD的长度是185或0.20.(-∞,1-2√2]∪[3√2+2,+∞)解析(换元法与构造法)由题意f(x)的定义域为xx≠𝑘π2,k∈Z,f(x)=sinx+cosx

+tanx+1tan𝑥+1cos𝑥+1sin𝑥=sinx+cosx+1sin𝑥cos𝑥+sin𝑥+cos𝑥sin𝑥cos𝑥.令sinx+cosx=t,则sinxcosx=12(t2-1),t=√

2sinx+π4∈[-√2,√2].又因为x≠𝑘π2,k∈Z,所以t∈[-√2,√2]且t≠±1,f(t)=t+2𝑡2-1+2𝑡𝑡2-1=t+2𝑡-1=(t-1)+2𝑡-1+1,令u=t-1,则u∈[-√2-1,√2-1]且u≠0,-2,设g(u)=u+2𝑢,g(u)=u+2𝑢

在(-∞,-√2)内单调递增,在(-√2,0)内单调递减,在(0,√2)内单调递减,在(√2,+∞)内单调递增,当u∈[-√2-1,-2)∪(-2,0)时,g(u)≤g(-√2)=-2√2,由g(-2)=-3,则g(u)∈(-∞,-2√2],f(t)∈(-∞,1-

2√2],当u∈(0,√2-1]时,g(u)=u+2𝑢在(0,√2-1]内单调递减,所以g(u)≥g(√2-1)=3√2+1,f(t)∈[3√2+2,+∞).所以函数f(x)的值域为(-∞,1-2√2]∪[

3√2+2,+∞).

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?