安徽省皖江名校联盟2021届高三下学期开年考(2月)理科数学试题含答案

DOC
  • 阅读 1 次
  • 下载 0 次
  • 页数 13 页
  • 大小 915.267 KB
  • 2024-09-20 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
安徽省皖江名校联盟2021届高三下学期开年考(2月)理科数学试题含答案
可在后台配置第一页与第二页中间广告代码
安徽省皖江名校联盟2021届高三下学期开年考(2月)理科数学试题含答案
可在后台配置第二页与第三页中间广告代码
安徽省皖江名校联盟2021届高三下学期开年考(2月)理科数学试题含答案
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的10 已有1人购买 付费阅读2.40 元
/ 13
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】安徽省皖江名校联盟2021届高三下学期开年考(2月)理科数学试题含答案.docx,共(13)页,915.267 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-41de3eab1a1bdad16c4f9a59c030dacb.html

以下为本文档部分文字说明:

姓名__________座位号______________________________(在此卷上答题无效)数学(理科)本试卷共4页,23题(含选考题)。全卷满分150分,考试时间120分钟。考生注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡

上的指定位置。2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。写在试卷、草稿纸和答题卡上的非答题区域均无效。3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。写在试

卷、草稿纸和答题卡上的非答题区域均无效。4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效。5.考试结束后,请将本试卷和答题卡一并上交一、选择题:本题共12小题,每小题5分,共60

分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若集合30xMxx−=„,()2lg81Nxxx=++,则MN=A.(0,1B.(1,3C.()0,2D.(2,1−2.若复数z满足2iiza=+(aR,i是虚数单位),且4z

=,则a=A.3B.3−C.37D.733.函数()()ln,10e,01axxxfxx−−=剟剟(aR,e是自然对数的底数)且()12f=,则()41log3eff−−=A.13−−B.13−+C.13−D.1

3+4.若数列na各项均为正数,满足()2*11,2nnnaanna−+=N…,且2020215a=,202225a=,则2021a=A.25B.65C.2315D.2355.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通

过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照)0,0.5,)0.5,1,…,4,4.5分成9组,制成了如图所示的频率分布直方图。则估计全市居民月均用水量的中位数是A.2.25吨B.2.24

吨C.2.06吨D.2.04吨6.执行如图所示的程序框图,则输出s的值为A.4−B.8−C.203−D.11215−7.已知圆锥的顶点为A,过母线AB、AC的截面面积是23。若AB、AC的夹角是60,且AC与圆锥底面所成的角是30,则该圆锥的表面积是A.22B.()23

6+C.()426+D.()436+8.设0,将函数()sin43fxx=−+的图象向左平移3个单位长度,再向下平移4个单位长度,得到函数()ygx=的图象。若()gx在区间,123−上单调递

增,在区间5,312上单调递减,则=A.362k−,kNB.362k+,kNC.32D.39.有8位学生春游,其中小学生2名、初中生3名、高中生3名。现将他们排成一列,要求2名小学生相邻、3名初中生相邻,3名高中生中任意两

名都不相邻,则不同的排法种数有A.288种B.144种C.72种D.36种10.若关于x的不等式4142xax+−…对任意2x恒成立,则正实数a的最大值是A.1B.2C.3D.411.设aR,e为自然对数的底数,

函数()esinxfxax=−在()0,内有且仅有一个零点,则a=A.eB.1−C.4eD.42e12.已知抛物线2:2Cypx=的焦点F与双曲线221621xy−=的右焦点重合,斜率为k的直线l与C的两个交点为A,B。若4AFB

F+=,则k的取值范围是A.1515,,55−−+B.1515,00,55−C.1515,,33−−+D.1515,00,33−二、填

空题:本题共4小题,每小题5分,共20分。13.命题“xR,222xx−…”的否定是__________。14.设点O是ABC△外接圆的圆心,3AB=,且4AOBC=−。则sinsinBC的值是______

____。15.如图1,在一个正方形1234SSSS内,有一个小正方形和四个全等的等边三角形。将四个等边三角形折起来,使1S,,2S,,3S,,4S重合于点S,,且折叠后的四棱锥SABCD−的外接球的表面积是16(如图2

),则四棱锥SABCD−的体积是16.已知nS是各项均不为零的等差数列na的前n项和,且()2*21nnSan−=N,,使不等式1231aaa+2234345121111142nnnnnaaaaaaaaa++++++…成立,则实数的最大值是________

__。三.解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17-21题为必考题,每个试题考生都必须作答。第22,23题为选考题,考生根据要求作答。(一)必考题:共60分。17.(12分)在ABC△中,角A,,B,,C的对边分别是a,,b,,c

,,向量()2,sinmbcC=+,,向量()sin,2nBcb=+,,且满足2sinmnaA=。(1)求角A的大小;(2)若ABC△外接圆的半径是1,求当函数()cos24cossinfBBAB=−取最大值时ABC△的周长。18.(12分)如图3,在ABV△中,1ACBCCV===,A

CVB⊥于C。现将ABV△沿AC折叠,使VACB−−为直二面角(如图4),D是棱AB的中点,连接CD、VB、VD。(1)证明:平面VAB⊥平面VCD;(2)若棱AB上有一点E满足14BEBA=,求二面角CVEA−−的余弦值。1

9.(12分)已知椭圆()222:1012xyCbb+=中,以()2,1Q−为中点的弦AB所在直线的方程是240xy−+=。(1)求椭圆C的方程;(2)设点(),0Pm为椭圆C长轴上的一个动点,过点P作斜率为23b的直线l交椭圆C于S,T两点,证明:22

PSPT+为定值。20.(12分)已知函数()2lnfxxaxx=+−,其中0a…。(1)讨论()fx的单调性;(2)若函数()()()2e1lnxgxfxaxx=++−−,证明:当0x时,()3112gxx+。21.(12分)新冠肺炎,全民防控。

冠状肺炎的感染主要是人与人之间进行传播,可以通过飞沫、粪便、接触等进行传染。冠状肺炎感染人群年龄大多是40岁以上的人群。该病毒进入人体后有潜伏期(潜伏期是指病原体侵入人体至最早出现临床症状的这段时期),潜伏期越长,感染到他人的可能性

越高。现对200个病例的潜伏期(单位:天)进行调查,统计发现潜伏期的中位数为5,平均数为7.1,方差为506。一般认为超过8天的潜伏期属于“长潜伏期”,按照年龄统计样本,得到下面的22列联表:长潜伏期非长潜伏期40岁以上3011040岁以上及40岁以下2040(1)能否有95%

的把握认为“长潜伏期”与年龄有关?(2)假设潜伏期服从正态分布()2,N,其中近似为样本平均数,2近似为样本方差。(i)很多省份对入境人员一律要求隔离14天,请用概率和统计的知识解释其合理性;(ⅱ)

将样本频率近似当作概率,设另随机抽取的25个病例中属于“长潜伏期”的病例个数是X,,()*,025Xkkk=N剟的概率记作()()*,025PXkkk=N剟,试求X的数学期望以及当()PXk=取最大值时k的值。附:()()()()()22nadb

cKabcdacbd−=++++。()2PKk…0.1000.0500.010k2.7063.8416.635若随机变量Z服从正态分布()2,N,,则()0.6826PZ−+=,,()22PZ−+0.9544=

,()330.9974PZ−+=,5.062.25。(二)选考题:共10分。请考生在第22、23题中任选一题做答。如果多做,则按所做的第一题计分。22.(10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线1C的参数方程为2

cos3sinkkxtyt==(t为参数)以坐标原点为极点,x轴非负半轴为极轴建立极坐标系,且在两坐标系下长度单位相同。曲线2C的极坐标方程为2cos8sin50−+=。(1)当1k=时,1C是什么曲线?(2)当4k=时,求1C与2C的公共点的直角坐标。23.(10

分)选修4-5:不等式选讲设aR,()3fxxxa=−−+。(1)当2a=时,解不等式()1fx;(2)若对于任意实数x,不等式()2fxa„恒成立,求a的取值范围。理科数学参考答案题号12345678

9101112答案BCACDCDCBDDA1.【解析】因为03Mxx=,22021Nxxxxxx=+−=−或,所以(131,3MNxx==。2.【解析】因为()12222aiiaiazii++===−−,所以21

1444za=+=,37a=。3.【解析】由()12f=,,ln2a=。()()ln2ln,10,,01,xxxfxex−−=即()()ln,10,2,01,xxxfxx−−=于是()4log3411

log3ln213ffee−−=−=−−。4.【解析】由条件211nnnaaa−+=知,数列na是等比数列,则其公比满足2202220203aqa==,,3q=。因此202120202315aaq==。5.【解析】由频率分

布直方图可知,月用水量在)0,0.5的频率为0.080.50.04=。同理,在)0.5,1,,)1.5,2,,)2,2.5,,)3,3.5,,)3.5,4,,4,4.5等组的频率分布为0.

08,,0.21,,0.25,,0.06,,0.04,,0.02。由()10.040.080.210.250.060.040.0220.5a−++++++=,,解得a0.30=,,设中位数为x吨。因为前5组的频率之和为0.040.080.150.21

0.250.730.5++++=,,前4组的频率之和为0.040.080.150.210.480.5+++=,所以22.5x„。由()0.5020.50.48x−=−,解得2.04x=。6.【解析】0k=时,4s=−;1k=时,448s=−−=−;2k=

时,420833s=−+=−;133k+=时。此时退出循环,输出的203s=−。7.【解析】设圆锥的母线长是l,则21sin60232l=,22l=。则高是2,圆锥底面半径是22cos306=,于是该圆锥的表面积是

()()21262264362+=+。8.【解析】由题意知,()()singxx=。当3x=时,函数()gx取得最大值,所以232k=+,kZ。解得362k=+,,kN。因为()gx

在区间,123−上递增,在5,312上递减,所以312+且5123−,解得1205。因此32=。9.【解析】第一步,先将2名小学生看成一个人,3名初中生看成一个人,然后排成一排有22A种不同排法;第二步,将3名高中生插在这两个整体形成的3

个空档中,有33A种不同排法;第三步,排2名小学生有22A种不同排法,排3名初中生有33A种不同排法。根据分步计数原理,共有23232323144AAAA=种不同排法。10.【解析】()()min4242411818444222x

xxaxaxaaxa−−+++++−−−,即484aa+,解得04a。11.【解析】由sin0xeax−=得,sinxaxe=。因为()00,,,所以sin0x。因此sinxeax=。令()sinx

egxx=,0x,则()()2sincossinxexxgxx−=。由()0gx=得4x=。当04x时,()0gx;当4x时,()0gx,,所以()4min24gxge==。因此42ae=。12.【解析】双

曲线的标准方差是22111162xy−=,其右焦点是3,04。所以324p=,32p=,抛物线C是23yx=。联立23ykxbyx=+=消去y,化简整理得()222230kxkbxb+−+=

。由()2222340kbkb=−−得,129kb,,34kb。因为4AFBF+=,,所以12342xx++=,,即1252xx+=。而12223kbxxk−+=−,即22352kbk−−=,解得2654kbk−=。代入34kb得到,265344kkk−,155k−或155k

。13.【答案】0xR,20022xx−14.【答案】13【解析】设点D是边BC的中点,则()()()()221122AOBCADDOBCADBCABACACABACAB=+==+−=−即()21942AC−=−,21AC=。故sin1sin3BACC

AB==。15.【答案】163【解析】在图4中,连接AC,BD交于点O,则O是正四棱锥外接球的球心,正四棱锥的所有棱都相等,设其为x,,则外接球的半径是22OAx=,,所以224162x=,,22x=。因此222SOOAx===。故四棱

锥SABCD−的体积是()221116222333xSO==。16.【答案】445【解析】因为()()()1212121212nnnnaaSna−−−+==−,所以221nnSa−=就是()21nna−2na=,21nan=−,*nN。等差数列na的首项11a=,公差2d=。因为一

般项1211211114nnnnnnnaaaaaaa+++++=−,所以原式1223234511211111114nnnnaaaaaaaaaaaa+++=−+−++−

()()212121112432123nnnnaaaann+++=−=++。即()()222113212342nnnnnn++++。所以存在*nN,,使()()432123nn++成立,()()max443212345nn=

++。故实数的最大值是445。17.【解析】(1)由已知2sinmnaA=,得()()2sin2sin2sinaAbcBcbC=+++再根据正弦定理有,()()2222abcbcbc=+++,即222ab

cbc=++。由余弦定理得,2222cosabcbcA=+−,1cos2A=−因为()0,A,所以23A=。(2)由(1)知()2213cos22sin12sin2sin2sin22fBBBBBB

=+=−+=−−+。因为03B,所以3sin0,2B。因此当1sin2B=时,()fB有最大值32此时2sin3aRA==,2sin1bcRB===。故ABC△的周长是23+。18.【解析】(1)在图4中

,ACBC=,D是AB的中点,CDAB⊥。又VACB−−为直二面角,VCAC⊥,VC⊥底面ABC。而AB平面ABC,VCAB⊥,且VCCDC=,因此AB⊥平面VCD。又AB平面VAB,平面VAB⊥平面VCD。(2)以CA、CB、CV所在的直线分别为x轴、y轴、z轴,建立如图所示

的空间直角坐标系,则()0,0,0C,()1,0,0A,()0,1,0B,()0,0,1V,()0,0,1CV=因为14BEBA=,所以13,,044E,那么13,,044CE=。

设平面VCE的法向量(),,tmnp=,由0CVt=得,0p=。由0CEt=得,13044mn+=。所以()3,1,0t=−。同理可以求得平面VAB的一个法向量()1,1,1s=。于是()23130cos,1

5331ststst−+===−+。又二面角CVEA−−为锐角,所以二面角CVEA−−的余弦值为3015.19.【解析】(1)设()11,Axy,()22,Bxy,则2211222222112112xybxyb+=+=,相

减得,()()()()121212122012xxxxyyyyb+−+−+=,所以21212121212yyyybxxxx−+=−−+,即122121212021202yyyybxxxx+−−=−+−−。所以2111222ABOQbkk

=−=−,23b=。故椭圆C的方程是221123xy+=。(2)设直线()1:2lyxm=−交椭圆于()11,Sxy,()22,Txy,由()2212412yxmxy=−+=消去y得,22

22120xmxm−+−=。因此12xxm+=,212122mxx−=。于是()()2222221122PSPTxmyxmy+=−++−+()()()()222212121212555222444xmxmxxxxmxxm=−+−=+−−++()222251222154mmmm

=−+−+=。故22PSPT+为定值,且为15。20.【解析】(1)()212121axxfxaxxx−+=+−=,0x。若0a=,()1xfxx−=−,()fx在()0,1内单增,在()1,+内单减。若0a,由2210axx−+=知,18a=−。当180a

=−,即18a时,2210axx−+,此时()fx在()0,+内单增。当180a=−,即108a时,1184axa−=。此时()fx在1180,4aa−−,118,4aa+−+内单增,在118118,4

4aaaa−−+−内单减。(2)因为()()()221lnxxgxfxeaxxexx=++−−=+−,所以()3112gxx+就是23112xexxx+−+,即231102xexxx+−−−。令()23112xhxexxx=+−−−,0x,则()232

12xhxexx=+−−,0x,()23xhxex=+−,0x。由()30xhxe=−=得,ln3x=,()ln3h是()hx的最小值。于是()()ln353ln30hxh=−,()hx在0x时单增

,所以()()00hxh=,()hx在0x时单增。故当0x时,()()00hxh=,即()3112gxx+。21.【解析】(1)()222003040110203.171406050150K−=,由于3.173.841,故没有95%的把握认为“长

潜伏期”与年龄有关;(2)(i)若潜伏期服从()27.1,2.25N,由()10.997413.850.00132PZ−==,得潜伏期超过14天的概率很低,因此隔离14天是合理的。(ii)由于200个病例中有50个属于“长潜伏期”,

将样本频率视作概率,一个患者属于“长潜伏期”的概率是14,又另随机抽取的25个病例中属于“长潜伏期”的病例个数是X,则1~25,4XB,则()254EX=,且()()25*2513,02544kkkPXkC

kNk−==。由251261252525124125251313444413134444kkkkkkkkkkkkCCCC−−−−−+−+

,得111322k,又*kN,所以6k=。故X的数学期望是254,()PXk=取最大值时k的值为6。22.【解析】(1)当1k=时,2cos3sinkkxtyt==就是

2cos3sinxtyt==,即cos2sin3xtyt==。因为22sincos1tt+=,所以22149xy+=。故曲线1C以坐标原点为中心,焦点在y轴上,长轴长为6,短轴长为4的椭圆。(2)当4k=时,2cos3sinkkxtyt==就是442cos

3sinxtyt==,即22cos2sin3xtyt==。因为22sincos1tt+=,所以123xy+=,即为曲线1C的普通服从。因为曲线2C的极坐标方程为2cos8sin50−+=,所以

其直角坐标方程是2850xy−+=。联立1232850xyxy+=−+=解得,1234xy==。故1C与2C的公共点的直角坐标是13,2423.【解析】(1)2a=时,不等式()1fx就是321xx−−+。因为()5,221,235,3xfxxxx

−=−+−−所以()1fx等价于251x−或230xx−或351x−,因此0x。故不等式()1fx的解集是(),0−。(2)因为abab−−,所以()()()333fxxxaxxaa=−−+−−+=+„。因此()f

x的最大值为3a+。则对于任意实数x,()2fxa„恒成立等价于32aa+„。当3a−…时,32aa+„,得3a…;当3a−时,32aa−−„,1a−…,不成立。综上可知,a的取值范围是)3,+。

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?