广西百色市2020-2021学年高二下学期期末考试数学(理)试题 含答案

DOC
  • 阅读 1 次
  • 下载 0 次
  • 页数 10 页
  • 大小 649.630 KB
  • 2024-09-25 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
广西百色市2020-2021学年高二下学期期末考试数学(理)试题 含答案
可在后台配置第一页与第二页中间广告代码
广西百色市2020-2021学年高二下学期期末考试数学(理)试题 含答案
可在后台配置第二页与第三页中间广告代码
广西百色市2020-2021学年高二下学期期末考试数学(理)试题 含答案
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的7 已有1人购买 付费阅读2.40 元
/ 10
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】广西百色市2020-2021学年高二下学期期末考试数学(理)试题 含答案.docx,共(10)页,649.630 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-40fb99868c32bdb6941c570fd1d74b9a.html

以下为本文档部分文字说明:

1百色市2021年春季学期期末教学质量调研测试高二理科数学(总分150分,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的班级、姓名,准考证号等填写在答题卡指定位置上。2.本试卷分为选择题和非选择题两部分,回答选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案

标号涂黑,如需改动,用橡皮擦干净后,再选其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,只交答题卡,试卷自行保存.第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分。在每小题给出的四个

选项中,只有一项是符合题目要求的)·1.设复数2zai=+,若zz=,则实数a=()A.0B.2C.-1D.-22.数列na中,已知11a=,当2n时,121nnaan−=+−,依次计算2a,3a,4a后,猜想na的表达式是()A.32nan=−

B.43nan=−C.2nan=D.13nna−=3.对两个变量y和x进行回归分析,得到一组样本数据:()()()1122,,,,,nnxyxyxy,则下列说法中不正确的是()A.由样本数据得到的回归方程ybxa=+必过样本中心(),xyB.残差平方和越大的模型,拟

合的效果越好C.用相关指数2R来刻画回归效果,2R越大,说明模型的拟合效果越好D.若变量y和x之间的相关系数为0.9362r=−,则变量y和x之间具有线性相关关系4.设()fx在定义域内可导,其图象如图所示,则导函数()fx的图象可能是()2A.B.C.D.5.函数()

22lnfxxx=−的单调减区间是()A.()0,1B.()1,+C.(),1−D.()1,1−6.已知函数()lnfxx=,则函数()()()gxfxfx=−的零点所在的区间是()A.()0,1B.()1,2C.()2

,3D.()3,47.已知随机变量服从正态分布()24,N,则()60.1P=,则()24P=()A.0.8B.0.6C.0.4D.0.28.把一枚硬币连续抛两次,记“第一次出现正面”为事件A,“第二次出现正面”

为事件B,则()PBA=()A.12B.14C.16D.189.随机变量X的分布列为x-101Pabc其中a,b,c成等差数列,则()1PX=等于()A.16B.13C.12D.2310.若样本数据1210,,,xxx的标准差为8,则数据121021,

21,,21xxx−−−的标准差为()A.8B.15C.16D.1811.从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是()3A.518B.49C.59D.791

2.已知函数()32fxxaxa=++,过点()1,0M−引曲线():Cyfx=的两条切线,这两条切线与y轴分别交于A,B两点,若MAMB=,则()fx的极大值点为()A.324−B.324C.63−D.63第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分).13.二项式61

xx+的展开式中,常数项是______________.14.某校的书法绘画,乐器演奏,武术爱好三个兴趣小组的人数分别为600,400,300,若用分层抽样方法抽取n名学生参加某项活动,已知从武术小组中抽取了6名学生,则n的值为______________.15.现有一圆桌,周边有标

号为1,2,3,4的四个座位,甲、乙、丙、丁四位同学坐在一起探讨一个数学课题,每人只能坐一个座位,甲先选座位,且甲、乙不能相邻,则所有选座方法有______________种.(用数字作答)16.若函数()22lnfxmxx=−+在21,ee

上有两个零点,则实数m的取值范围为______________.三、解答题(共70分.解答应写出必要的文字说明、证明过程或演算步骤.)17.设()()201822018012201812xaaxaxaxxR−=++++.(1)求0122018aaaa++++的值.(2)求13

52017aaaa++++的值.18.已知函数()32fxxxx=+−,2,1x−.(1)求()fx的单调区间;(2)求()fx的最大值和最小值.19.已知数列na的前n项和nS,()()1121,44nnSnanN+=++.(1)求

1a,2a,3a;(2)猜想数列na的通项公式,并用数学归纳法给予证明.20.某电视台举行一个比赛类型的娱乐节目,A、B两队各有六名选手参赛,将他们首轮的比赛成绩作为样本数4据,绘制成茎叶图如图所示,为了增加节目的趣味性,主持人故意将A队第

六位选手的成绩没有给出,并且告知大家B队的平均分比A队的平均分多4分,同时规定如果某位选手的成绩不少于21分,则获得“晋级”.(1)根据茎叶图中的数据,求出A队第六位选手的成绩;(2)主持人从AB两队所有选手成绩分别随机抽取2个,记抽取到“晋级”选手的总人数为,求

的分布列及数学期望.21.在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期.一研究团队统计了某地区1000名患者的相关信息,得到如下表格:潜伏期0,2(2,4(4,6(6,8(8,10(10,12(

12,14人数85205310250130155(1)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表.请将列联表补充完整,并根据列联

表判断是否有95%的把握认为潜伏期与患者年龄有关;潜伏期≤6天潜伏期>6天总计50岁以上(含50岁)10050岁以下55总计200(2)以这1000名患者的潜伏期超过6天的频率,代替该地区1名患者潜伏期超

过6天发生的概率,每名患者的潜伏期是否超过6天相互独立.为了深入研究,该研究团队随机调查了20名患者,设潜伏期超过6天的人数为X,则X的期望是多少?()20PKk0.050.0250.0100k3.8415.0246.

635附:()()()()()22nadbcKabcdacbd−=++++其中nabcd=+++.22.已知函数()lnxfxkx=+的极大值为1ee+,其中k为常数,2.71828e=…为自然对数的底数.5(1)求k的值;(2)

若函数()xagxex=−,对任意实教()0,x+,不等式()()gxafx恒成立,求实数a的取值范围.百色市普通高中2021年春季学期期末考试高二理科数学参考答案及评分标准1.【答案】A利用共轭复数及复数相等的定义即可得到答案.【解】因为zz=,所

以22aiai+=−,解得0a=.故选:A.2.【答案】C属基础题.3.【答案】B.【解】对于A选项,回归直线ybxa=+必过样本的中心(),xy,A选项正确;对于B选项,残差平方和越大的模型,拟合的效果越差,B选项错误;对于C选项,用

相关指数2R来刻画回归效果,2R越大,说明模型的拟合效果越好,C选项正确;对于D选项,若变量y和x之间的相关系数为0.9362r=−,则变量y和x之间具有较强的线性相关关系,D选项正确.故选:B.4.【

答案】B.解:试题分析:函数的递减区间对应的()0fx,函数的递增区间对应()0fx,可知B5.【答案】A.【解】由题意,函数()22lnxxxf=−的定义域为()0,+,且()()()21

122xxfxxxx−+=−=,因为0x,可得10x+,令()0fx,即10x−,解得01x,所以函数()fx的递减区间为()0,1.6.B【解析】由题可知()1lngxxx=−,∵()110g=−,()12ln2ln2102gn=−=−,∴选B.7

.【答案】C.【解】因为随机变量服从正态分布()24,N,4=,所以()()260.1PP==,故()26120.10.8P=−=,所以()()()12446260.42PPP===,故选:C.8.【答案】A.【解】“第一次出现正面”:()12PA=,

“两次出现正面”:()111224PAB==,则()()()114122PABPBAPA===,故选;A9.【答案】D.因为a,b,c成等差数列,所以2bac=+,又1abc++=,所以13b=,所以

()213PXac==+=.610.【答案】C.【解】设样本数据1210,,,xxx的标准差为DX,则8DX=,即方差64DX=,而数据121021,21,,21xxx−−−的方差,()22212264DXDX−==所以其标准差为226416=.故选C.11.【答案】.C.【解析

】不放回的抽取2次有11989872CC==,如图可知()1,2与()2,1是不同,所以抽到的2张卡片上的数奇偶性不同有11542CC40=,所求概率为405729=.12.【答案】A.解:设切点坐标为()3,2ttata++,∵26tyxa=+,∴32261tatatat++

+=+,即32460tt+=,解得0t=或32t=−.∵MAMB=,∴3020xxyy−−+=,即232602a+−=,则274a=−,()22764fxx=−.当324x−或324x时,()0fx;当3

23244x−时,()0fx.故()fx的极大值点为324−.13.【答案】20,解:由题意展开式通项公式为6621661ryyyyyTCxCxx−−+==,令620r−=,3r=,所

以常数项为34620TC==.故答案为:20.14.【答案】26【解析】因为书法绘画,乐器演奏,武术爱好三个兴趣小组的人数分别为600,400,300,所以得到武术小组占总人数的比值为300360040030013=++,因为武术小组中抽取了

6名学生,根据分层抽样的特点可得6313n=,解得26n=。考点:分层抽样问题15.【答案】8【解析】先按排甲,其选座方法有14C种,由于甲、乙不能相邻,所以乙只能坐甲对面,而丙、丁两位同学坐另两个位置的坐法有22A种,所以共有坐法种数为1242CA428==种

.故答案为:8.16.【答案】411,4e+解:令()22ln0fxmxx=−+=,则22lnmxx=−,令()22lngxxx=−,则由7()()()21122xxgxxxx−+=−=知,()gx在21,1e上单调递减,在

1,e上单调递增,且()()min11gxg==,24114gee=+,()22gee=−,∵4145e+,2e25−,∴()21geeg,所以若函数()fx在21,ee上有两个零点,则实数m的取值范围为411

,4e+.17.【解】(1)令1x=,得()2018012201811aaaa++++=−=①(2)令1x=−,得201801220183aaaa−+−+=②①-②得()13520172018213aaaa++++=−∴201813520

17132aaaa−++++=.18.【解】(1)因为函数()32fxxxx=+−,()()21321313fxxxxx=+−=−+,当21x−−或113x时,()0fx,当113x−

时,()0fx,所以()fx的增区间是:2,1−−,1,13;()fx的减区间是:11,3−.(2)由(1)知:当1x=−时,()fx取得极大值1;当13x=时,()fx取得极小值527−;又()2

2f−=−,()11f=.所以()fx的最大值1和最小值-2.19.【解析】(1)分别取1,2,3n=得1113144Saa==+,21225144Saaa=+=+,312337144Saaaa=++=+,解得11a=,23a=,35a=.(2)猜想21nan=−证明:①1n=时,由(1

)知,11211a==−,猜想成立,②假设()nkkN+=时,21kak=−8则()()()()111111111123212121444444kkkkkkkaSSkakakaka++++=−=++−++−=+所以()()111212144kkkaka+−=+因为21

kak=−,所以()121211kakk+=+=+−所以,1nk=+时21nan=−成立,综上所述,任意nN+,21nan=−.20.解:(1)B队选手的平均分为,111221252736226+++++=,设A队第6位选手的成绩为x,则911132431186x+++++=,得20x=

.(1)的可能取值有0,1,2,3,4,()2242226660225CCPCC===;()122124112442622656$$1225CCCCCCPCC+===;()111122222442224422

661012225CCCCCCCCPCC++===;()111122422442266563225CCCCCCPCC+===;()1224226664225CCPCC===.01234P622556225101225562256225∴的分布列为∴()65610

1566012342225225225225225E=++++=.21.解:(1)根据题意,补充完整列联表如下:9潜伏期<6天潜伏期≥6天总计50岁以上(含50岁)653510050岁以下5545100总计12080200则()2265455535252.0

831208010010012K−==,经查表,得22.0833.841K,所以,没有95%的把握认为潜伏期与年龄有关.(2)由题可知,该地区每1名患者潜伏期超过6天发生的概率为400210005=,设调查的20名患者中潜伏期超过6天的人数为X,则X服从二项分布:X:220

,5B,()20202355kkkPXkC−==,0,1,2,,20k=,则()22085EX==,所以,X的期望为()8EX=.22.解(1)()fx的定义域为()0,+,

()21lnxfxx−=,令()0fx,解得:0xe,令()0fx,解得:xe,所以当()0,xe,()fx为增函数,当(),xe+,()fx为减函数,所以xe=时,()fx有极大值()11efekee+=+=,所以1k=;(2)由(1)知,()ln1xfxx=

+,则()()gxafx,即lnxaaxeaxx−+对()0,x+恒成立,所以lnxxeaaxax−+对()0,x+恒成立,即ln0xxeaxaxa−−−对()0,x+恒成立..设()lnxhxxeaxaxa=−−

−,则()0hx对()0,x+恒成立,()()lnlnlnxxhxxhxeeaxaxaeaxxa+=−−−=−+−10设lnxxt+=,Rt,原问题转化为:()0tteata=−−对Rt恒成立,①若0

a,当(),0t−时,()1tteataata=−−−−,则111110aaaa−−−−=,不合题意;②若0a=,则()0tte=对Rt恒成立,符合题意③若0a,

则()ttea=−,令()0t,lnta,令()0t,lnta,所以当(),lnta−时,()t为减函数,当()ln,ta+时,()t为增函数,所以()()helnlnln0taeaaaaa=−−=−,即ln0a,即

01a;综上01a.

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
相关资源
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?