【文档说明】2021-2022学年高一数学人教A版必修1教学教案:2.1.2 指数函数及其性质 (4) 含解析【高考】.doc,共(3)页,348.500 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-39b62fc89f40f51567368f958141e5b9.html
以下为本文档部分文字说明:
-1-课题:§2.1.2指数函数及其性质教学任务:(1)使学生了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;(2)理解指数函数的的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单调性和特殊点;(3)在学习的过程中体会研究具体函数及其性质的过程和方法,
如具体到一般的过程、数形结合的方法等.教学重点:指数函数的的概念和性质.教学难点:用数形结合的方法从具体到一般地探索、概括指数函数的性质.教学过程:一、引入课题(备选引例)1.(合作讨论)人口问题是全球性问题,由于全球人口迅猛增加,已引起全世界关注.世界人口20
00年大约是60亿,而且以每年1.3%的增长率增长,按照这种增长速度,到2050年世界人口将达到100多亿,大有“人口爆炸”的趋势.为此,全球范围内敲起了人口警钟,并把每年的7月11日定为“世界人口日”,呼吁各国要控制人口增长.为了控制人口过快增长,许多国
家都实行了计划生育.我国人口问题更为突出,在耕地面积只占世界7%的国土上,却养育着22%的世界人口.因此,中国的人口问题是公认的社会问题.2000年第五次人口普查,中国人口已达到13亿,年增长率约为1%.为了有效地控制人口过快增长,实行计划生育成为
我国一项基本国策.○1按照上述材料中的1%的增长率,从2000年起,x年后我国的人口将达到2000年的多少倍?○2到2050年我国的人口将达到多少?○3你认为人口的过快增长会给社会的发展带来什么样的影响?2.上一节中GDP问题中时间x与GDP值y的对应关系y=1.073x(x∈N*,x≤2
0)能否构成函数?3.一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x年为自变量,残留量y的函数关系式是什么?4.上面的几个函数有什么共同特征?二、新课教学(一)指数函数的概念一般地,函数)
1a,0a(ayx=且叫做指数函数(exponentialfunction),其中x是自变量,函数的定义域为R.注意:○1指数函数的定义是一个形式定义,要引导学生辨析;○2注意指数函数的底数的取值范围,引导学生分析底数为什么不能是负数、零和
1.巩固练习:利用指数函数的定义解决(教材P68例2、3)(二)指数函数的图象和性质问题:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗?研究方法:画出函数的图象,结合图象研究函数的性质.研究内
容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.-2-探索研究:1.在同一坐标系中画出下列函数的图象:(1)x)31(y=(2)x)21(y=(3)x2y=(4)x3y=(5)x5y=2.从画出的图象中你能发现函数x2y=的图象和函数x)21(y
=的图象有什么关系?可否利用x2y=的图象画出x)21(y=的图象?3.从画出的图象(x2y=、x3y=和x5y=)中,你能发现函数的图象与其底数之间有什么样的规律?4.你能根据指数函数的图象的特征归纳出指数函数的
性质吗?图象特征函数性质1a1a01a1a0向x、y轴正负方向无限延伸函数的定义域为R图象关于原点和y轴不对称非奇非偶函数函数图象都在x轴上方函数的值域为R+函数图象都过定点(0,1)1a0=自左向右看,图象逐渐
上升自左向右看,图象逐渐下降增函数减函数在第一象限内的图象纵坐标都大于1在第一象限内的图象纵坐标都小于11a,0xx1a,0xx在第二象限内的图象纵坐标都小于1在第二象限内的图象纵坐标都大于11a,0xx1a,0xx图象上升趋势是越来越陡图象上升趋势是越来越
缓函数值开始增长较慢,到了某一值后增长速度极快;函数值开始减小极快,到了某一值后减小速度较慢;5.利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,)1a0a(a)x(fx=且值域是)]b(f),a(f[或)]a(f)
,b(f[;(2)若0x,则1)x(f;)x(f取遍所有正数当且仅当Rx;(3)对于指数函数)1a0a(a)x(fx=且,总有a)1(f=;-3-(4)当1a时,若21xx,则)x(f)x(f21;(三)典型例题例1.(教材P66例
6).解:(略)问题:你能根据本例说出确定一个指数函数需要几个条件吗?例2.(教材P66例7)解:(略)问题:你能根据本例说明怎样利用指数函数的性质判断两个幂的大小?说明:规范利用指数函数的性质判断两个幂的大小方法、步骤与格式.巩固练习:(教材P6
9习题A组第7题)三、归纳小结,强化思想本节主要学习了指数函数的图象,及利用图象研究函数性质的方法.四、作业布置1.必做题:教材P69习题2.1(A组)第5、6、8、12题.2.选做题:教材P70习题2.1(B组)第1题.