2025届高考一轮复习专项练习 数学 课时规范练19 三角函数的图像与性质 Word版含解析

DOC
  • 阅读 1 次
  • 下载 0 次
  • 页数 5 页
  • 大小 135.190 KB
  • 2024-10-15 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
2025届高考一轮复习专项练习 数学 课时规范练19 三角函数的图像与性质 Word版含解析
可在后台配置第一页与第二页中间广告代码
2025届高考一轮复习专项练习 数学 课时规范练19 三角函数的图像与性质 Word版含解析
可在后台配置第二页与第三页中间广告代码
2025届高考一轮复习专项练习 数学 课时规范练19 三角函数的图像与性质 Word版含解析
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的2 已有1人购买 付费阅读2.40 元
/ 5
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】2025届高考一轮复习专项练习 数学 课时规范练19 三角函数的图像与性质 Word版含解析.docx,共(5)页,135.190 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-390bb260e3f816cfa3000f92667dccbe.html

以下为本文档部分文字说明:

课时规范练19三角函数的图像与性质基础巩固组1.函数y=|2sinx|的最小正周期为()A.πB.2πC.π2D.π42.函数y=sinπ4-x的一个单调递增区间为()A.3π4,7π4B.-π4,3π4C.-π2,π2D.-3

π4,π43.(2020天津,8)已知函数f(x)=sin(𝑥+π3).给出下列结论:①f(x)的最小正周期为2π;②f(π2)是f(x)的最大值;③把函数y=sinx的图像上所有点向左平移π3个单位长度,可得到函数y=f(x)的图像.其中所有正

确结论的序号是()A.①B.①③C.②③D.①②③4.已知函数f(x)=sinωx+π6-1(ω>0)的最小正周期为2π3,则f(x)的图像的一条对称轴方程是()A.x=π9B.x=π6C.x=π3D.x=π25.(多选)设函数f(x)=sinx-π4,则下列结论正确的是()A.f(x)的

一个周期为2πB.f(x)的图像关于直线x=π4对称C.f(x)的图像关于点-π4,0对称D.f(x)在区间0,π2上单调递增6.(多选)(2020山东青岛五十八中模拟)已知函数f(x)=cos2x-π

6,则下列结论中正确的是()A.函数f(x)是周期为π的偶函数B.函数f(x)在区间π12,5π12上单调递减C.若函数f(x)的定义域为0,π2,则值域为-12,1D.函数f(x)的图像与g(x)=-sin2x-2π3的图像重合7.函数f(x)=tan2x+π3

的单调递增区间是.8.已知直线y=m(0<m<2)与函数f(x)=2sin(ωx+φ)(ω>0)的图像相邻的三个交点依次为A(1,m),B(5,m),C(7,m),则ω=.综合提升组9.(2020广东广

州一模,理6)如图,圆O的半径为1,A,B是圆上的定点,OB⊥OA,P是圆上的动点,点P关于直线OB的对称点为P',角x的始边为射线OA,终边为射线OP,将|𝑂𝑃⃗⃗⃗⃗⃗−𝑂𝑃'⃗⃗⃗⃗⃗⃗|表示为x的函数f(x),则y=f(x)在[0,π]上的图像大致为()10.已知ω>0,

函数f(x)=sinωx+π4在π2,π上单调递减,则ω的取值范围是()A.12,54B.12,34C.0,12D.(0,2]11.(2020全国3,文12)已知函数f(x)=sinx+1sin𝑥,则()A.f(x)的最小值为2

B.f(x)的图像关于y轴对称C.f(x)的图像关于直线x=π对称D.f(x)的图像关于直线x=π2对称12.已知函数f(x)=√2sin2x-π4的定义域为[a,b],值域为-√2,√22,则b-a的值不可能是()A.5π12B.π2C.7π12D.π13.(2

020江西名校大联考,理16)函数f(x)=sinx+12sin2x的最大值为.创新应用组14.(2020北京西城十五中一模,14)已知函数f(x)=sinx,若对任意的实数α∈-π4,-π6,都存在唯一

的实数β∈(0,m),使f(α)+f(β)=0,则实数m的最大值是.参考答案课时规范练19三角函数的图像与性质1.A由图像知T=π.2.Ay=sinπ4-x=-sinx-π4,故由2kπ+π2≤x-π4≤2kπ+3π2(k∈Z),解得2kπ+3π4≤x≤2kπ+7π4(k∈Z).故单调递增区间为2

kπ+3π4,2kπ+7π4(k∈Z).当k=0时,函数的一个单调递增区间为3π4,7π4.3.B∵f(x)=sin(𝑥+π3),∴①f(x)最小正周期T=2π1=2π,正确;②f(π2)=sin(π2+π3)=sin5π6≠1,不正确;③y=

sinxf(x)=sinx+π3,正确.故选B.4.A依题意,得2π|𝜔|=2π3,即|ω|=3.又ω>0,所以ω=3,所以3x+π6=kπ+π2,k∈Z,解得x=𝑘π3+π9,k∈Z,当k=0时,x=π9.因此函数f(x)的图像的一条对称轴方程是x=π9.5.AD函数的最小正周

期为T=2π|𝜔|=2π,所以2π是函数f(x)的一个周期,故A正确;当x=π4时,fπ4=sinπ4−π4=0,直线x=π4不是f(x)图像的对称轴,故B错误;当x=-π4时,f-π4=sin-π4−π4=-1

≠0,故C错误;当x∈0,π2时,x-π4∈-π4,π4,所以函数f(x)=sinx-π4单调递增,故D正确.故选AD.6.BD因为f(x)=cos2x-π6,则函数f(x)是周期为π的函数,但不是偶函数,故A错误;当x∈π12,5π12时,2x-π6∈0,2π3,且0,2π3⊆[

0,π],则函数f(x)在区间π12,5π12上单调递减,故B正确;若函数f(x)的定义域为0,π2,则2x-π6∈-π6,5π6,其值域为-√32,1,故C错误;g(x)=-sin2x-2π3=-sin-π2+2x-π6=sinπ2-2x-π6=cos2x-π6

,故D正确.故选BD.7.𝑘π2−5π12,𝑘π2+π12(k∈Z)由kπ-π2<2x+π3<kπ+π2(k∈Z),得𝑘π2−5π12<x<𝑘π2+π12(k∈Z),所以函数f(x)=tan2x+π3的单调递增区间为𝑘π2−5π12,𝑘π2+π12(k∈Z).8

.π3由题意,f(x)图像的相邻的两条对称轴分别为x=1+52=3,x=5+72=6,故函数的周期为2×(6-3)=2π𝜔,得ω=π3.9.B由题意,当x=0时,P与A重合,则P'与C重合,所以|𝑂𝑃⃗⃗⃗⃗⃗−𝑂

𝑃'⃗⃗⃗⃗⃗⃗|=|𝐶𝐴⃗⃗⃗⃗⃗|=2,故排除C,D选项;当0<x<π2时,|𝑂𝑃⃗⃗⃗⃗⃗−𝑂𝑃'⃗⃗⃗⃗⃗⃗|=|P'P|=2sinπ2-x=2cosx,由图像可知选B.故选B.10.A由π2<x<π,得π2𝜔+π4<ωx+π4<πω+π4,由

题意π2𝜔+π4,πω+π4⊆2kπ+π2,2kπ+3π2,k∈Z,∴{π2𝜔+π4≥2𝑘π+π2,𝑘∈Z,π𝜔+π4≤2𝑘π+3π2,𝑘∈Z,∴4k+12≤𝜔≤2k+54,k∈Z,当k=0时,12≤𝜔≤54,故选A.11.D由

sinx≠0可得函数的定义域为{x|x≠kπ,k∈Z},关于原点对称,且函数f(-x)=sin(-x)+1sin(-𝑥)=-sinx-1sin𝑥=-f(x),故该函数为奇函数,其图像关于原点对称,选项B

错误;令t=sinx,则t∈[-1,0)∪(0,1],由g(t)=t+1𝑡的性质,可知g(t)∈(-∞,-2]∪[2,+∞),故f(x)无最小值,选项A错误;由f(2π-x)=sin(2π-x)+1sin(2π-𝑥)=-sinx-1sin𝑥=-f(x),f(π-x)=sin(π-x)+1s

in(π-𝑥)=sinx+1sin𝑥=f(x),故函数f(x)的图像关于直线x=π2对称,选项D正确.故选D.12.D∵a≤x≤b,∴2a-π4≤2x-π4≤2b-π4.又-√2≤√2sin2x-

π4≤√22,即-1≤sin2x-π4≤12,∴2b-π4-2a-π4max=π6--7π6=4π3,2b-π4-2a-π4min=π6--π2=2π3,故π3≤b-a≤2π3,故b-a的值不可能是π,故选D.13.3√34由题意,f'(x)=

cosx+cos2x=2cos2x+cosx-1=(2cosx-1)(cosx+1),因为cosx+1≥0,所以当cosx>12时,f'(x)>0,当-1<cosx<12时,f'(x)<0,即x∈2kπ-π3,2kπ+π3时,f(x)单调递增,当x∈2kπ+π3,2kπ+5π3时,f(x)单调

递减,故f(x)在x=2kπ+π3,k∈Z处取得极大值,即f(x)的最大值,所以f(x)max=sinπ3+12sin2×π3=√32+12×√32=3√34.14.3π4由f(x)=sinx,且α∈-π4,-π6,可得f(α)∈-√22,-12,因为存在唯一的实数β∈(0,m

),使f(α)+f(β)=0,即f(β)=k,k∈12,√22有且仅有一个解,作函数y=f(β)的图像及直线y=k,k∈12,√22如下,当两个图像只有一个交点时,由图像,可得π4≤m≤3π4,故实数m的最大值是3π4.

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
相关资源
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?