福建省2020届高三考前冲刺适应性模拟卷(一)数学(文)试题含答案

DOC
  • 阅读 1 次
  • 下载 0 次
  • 页数 20 页
  • 大小 1.982 MB
  • 2024-09-05 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
福建省2020届高三考前冲刺适应性模拟卷(一)数学(文)试题含答案
可在后台配置第一页与第二页中间广告代码
福建省2020届高三考前冲刺适应性模拟卷(一)数学(文)试题含答案
可在后台配置第二页与第三页中间广告代码
福建省2020届高三考前冲刺适应性模拟卷(一)数学(文)试题含答案
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的17 已有1人购买 付费阅读2.40 元
/ 20
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】福建省2020届高三考前冲刺适应性模拟卷(一)数学(文)试题含答案.doc,共(20)页,1.982 MB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-34e665872d19d6ac8890ad96376c27ff.html

以下为本文档部分文字说明:

福建省2020届高三数学考前冲刺适应性模拟卷文科数学(一)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z满足i2iz,则z在复平面内对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限

2.已知集合2{20}AxxxN|,{1,1,2}B,则ABA.{1,1,2}B.{1,2}C.{1,1}D.{1}3.若椭圆14922yx的焦点和顶点分别是双曲线E的顶点和焦点,则E的离心率是

A.553B.554C.13133D.354.甲、乙、丙三部门组织人员报名参加一项志愿者活动,已知甲、乙两部门各报了2人,丙部门报了1人,若从这5人中随机抽取3人,则这3人来自不同部门的概率为A.13B.23C.310D.255.已知函数)(xfy

是R上的奇函数,当0x时,2sinfxxx,则)(xf在2x处的切线的斜率为A.πB.πC.π1D.π16.执行如图所示的程序框图,若输入的]1,1[x,则输出的y的取值范围是A.]1,1[B.]41,1

[C.]41,2[D.]1,0[7.已知某圆锥的母线与底面所成的角为60,轴截面的面积为34,则该圆锥的侧面积为A.43B.4C.8D.168.2020年是5G的爆发之年,5月中国信通院发布了2020年4月国内手机市场运行分析报告,该报告统计了从2019年7月

到2020年4月这十个月国内手机市场总出货量与国内5G手机出货量占同期手机出货量比重变化情况(简称市场占比),得到下面两个统计图,则下列描述不正确的是A.2020年4月国内5G手机出货量是这十个月中的最大值

B.从2019年7月到2020年2月,国内5G手机出货量保持稳定增长C.相比2020年前4个月,2019年下半年的国内手机市场总出货量相对稳定D.2019年12月到2020年1月国内5G手机市场占比的增长率比2020年1月到2月的增长率大9.若0cba,则A.ccabab

B.2lnlnlnbacC.bccbababD.loglogabcc10.ABC△中,角A的平分线交BC于D,已知422ADACAB,则BCA.23B.3C.22D.3611.已知函数.0,1)1(,0,)(2xxfxxxf则xxfxg

)()(在(,3]的所有零点之和等于A.0B.2C.5D.612.已知半径为1的球O与正方体1111DCBAABCD的六个面均相切,P为球O的球面上的动点,若CAPD11,则P的轨迹对应的曲线长度为A.π36B.π32C.π34D.π3

62二、填空题:本大题共4小题,每小题5分,共20分.将答案填在答题卡的相应位置.13.已知向量2,1,1,tab,且aab,则实数t_____________.14.角的顶点为坐标原点O,始边

与x轴的非负半轴重合,终边与单位圆O交于点1(,)2Pb,则sin(2)2+_____________.15.若椭圆13:22yxE的左焦点是F,坐标原点为O,给定E上的任意一点P,则22||||PFPO的最小值为_____________.16.点P

(,())44f为函数()sin()(0)8fxx图象C上一点,已知P向右平移2个单位后仍落在C上.①*{|4,}Nkk②存在这样的,使得C上任一点向左平移4后仍在C上③存在这样的,使得C上的

点(())1212f,向右平移56后仍在C上④若()fx在19()542,单调递减,则274上述四个结论中,所有正确结论的编号为_____________.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~

21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)记nS为正项数列na的前n项和,已知nnnSaa422.(1)求na的通项公式;(2)记nT为正项等比数

列nb的前n项和,且21ab,283T,若1562nnT,求n的最小值.18.(12分)某百货公司旗下有甲、乙两家分店.为了调查两家分店的销售情况,现随机抽查了上个年度两家店20天的日销售额(单位:

万元),分别得到甲、乙两家分店日销售额的频率分布直方图如下:(1)经计算得到甲店日销售额的平均数为49,方差为33.87.①估计乙店日销售额的平均数(同一组中的数据用该组区间的中点值作代表);②若公司规定,分店一年(按360天计算)中日销售额不低于58万的天数应不

少于90天,结合上图,分析两家分店上个年度是否都有达到这一规定的要求?(2)如果你是投资决策者,你更愿意在哪家店投资,请你根据所学的统计知识,说明你的理由.19.(12分)如图,在六棱锥PABCDEF中,底面ABCDEF是边长为4的正六边形,27PA

PC.(1)点Q在侧棱PE上,且PB∥平面CFQ,证明:Q为PE的中点;(2)若25PB,求点E到平面PCD的距离.20.(12分)已知函数2()(2)lnfxaxaxx.(1)讨论()fx的单调性;(2)若()fx有两个零点,求a的取值范围.21.(

12分)已知点0,1F,直线:1ly,直线l垂直l于点P,线段PF的垂直平分线交l于点Q.(1)求点Q的轨迹C的方程;(2)过点,2Ha作C的两条切线,切点分别为,AB,记△HAB的外接圆为G,不论a取何值,试判断以HG为直径的圆是否恒过定点?若是,求出该定

点坐标;若不是,请说明理由.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线1C的极坐标方程为12sin2,

将曲线1C绕点O顺时针旋转4得到曲线2C.(1)求曲线2C的极坐标方程和直角坐标方程;(2)过点11P,的直线l交曲线2C于BA,两点,求PBPA的最小值.23.[选修4—5:不等式选讲](10分)已知函数3

)(xaxxf.(1)当2a时,求不等式()1fx≤的解集;(2)[3,3]x,()4fxx≤,求a的取值范围.2020届高三数学考前冲刺适应性模拟卷文科数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生

的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后

继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题和填空题不给中间分.一、单项选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题

目要求的.1.D2.B3.A4.D5.A6.B7.C8.B9.C10.A11.C12.D1.【解析】依题意,iii212z,则其在复平面内对应的点位于第四象限,故选D.2.【解析】依题意,}2,1,

0{}21{xxAN,则}2,1{BA,故选B.3.【解析】椭圆14922yx的左、右焦点分别为0,5,0,5,左、右顶点分别为0,3,0,3,设双曲线1:2222byaxE,则有3,5ca,故其离心率5535

3ace,故选A.4.【解析】设甲部门的两人为21,AA,乙部门的两人为21,BB,丙部门的一人为C,从中随机抽取3人,则所有基本事件为},,{121BAA,},,{221BAA,},,{21CAA,},,{211BB

A,},,{11CBA,},,{21CBA,},,{212BBA,},,{12CBA,},,{22CBA,},,{21CBB,共10种;3人来自不同部门包含的基本事件为},,{11CBA,},,{21CBA,

},,{12CBA,},,{22CBA,共4种;则3人来自不同部门的概率为52104.故选D.5.【解析】方法一:由函数xfy是R上的奇函数可得,当0x时,xxxfsin2,所以xxxfcos2,所以2f,由导数的几何意义可

得所求切线的斜率为,故选A.方法二:当0x时,2sinfxxx,所以xxxfcos2,因为函数xfy是R上的奇函数,可导的奇函数的导数是偶函数,所以22ff

,由导数的几何意义可得所求切线的斜率为,故选A.6.【解析】由程序框图可知,函数2,0,22,0.xxxxyx,绘制图象如下所示,结合图象可知,当]1,1[x时,1[1,]4y,故选B.7.【解析】

如图是圆锥的轴截面,由题意可得,60,SABSBSA,所以△SAB是等边三角形,设圆锥底面圆半径为r,则rAB2,所以343221rrSSAB,所以42r,所以圆锥侧面积为28rlrr,故选C.8.【解析】因为2020年4月国内手机市场总出货量和国内

5G手机市场占比均为十个月中的最大值,所以国内5G手机出货量最大,故A正确;从2019年7月到2020年2月,国内5G手机的市场占比保持稳定增长,受国内手机总出货量影响,2月国内5G手机的出货量比1月有所下降,故B错误;由上图知,相比2020年前4个月,2019年下半年的国内手机市场总

出货量相对稳定,故C正确;2019年12月到2020年1月国内5G手机市场占比的增长率为26.3%17.8%0.4817.8%,2020年1月到2月的增长率为37.3%26.3%0.4226.3%

,前者大,故D正确;故选B.9.【解析】通过()()(1)0cccabababab,或构造函数()cfxxx,根据其在(0,)单调递增,可知()()fafb,故A错误;因为2b与ac大小不能确定,故B错误

;因为()1bcbccbbccbabaababb,所以bccbabab,故C正确;令1c,则loglog0abcc,故D错误.故选C.10.【解析】解法一:依题意,sinsinBADCAD,sinsinCADAD

C,由正弦定理可知,ABD△中,sinsinBDABBADADB①;ACD△中,sinsinCDACCADADC②,将①÷②,得::ABACBDCD,故设2BDx,则CDx,又因为coscosADBADC

③,由余弦定理可知,ABD△中,222cos2ADBDABADBADBD④;ACD△中,222cos2ADCDACADCADCD⑤,联立③④⑤,可求得2x,故32BC,故选A.解

法二:过A作EBCAE,因为ADAC,所以EDEC,由角平分线定理可知,CDBDACAB::,若设xCD,则2xEDEC,xBD2.在AED△中,224EDAE①在AEB△中,222)(ABBDEDAE②联立①②可得2x,故32BC,故选A.11.

【解析】由已知可作出函数xf的部分图象,可得当3x时xfy与xy的图象的交点的横坐标分别为1,0,1,2,3,所以xxfxg在(,3]的所有零点之和等于5,故选C.12.【解析】依题意,P的轨

迹为平面11ABD与球O的截面对应的圆1O.依题意,可计算得,133OO,记11BD的中点为1P,在直角11OOP△中,可求得116=3OP,故圆1O的周长为π362,故选D.二、填空题:本大题共4小题,每小题5分,共20分.将答案填在

答题卡的相应位置.13.【解析】解法一:由已知2,1,1,tab,得3,1tab,根据aab得231(1)70ttaab,解得7t.解法二:由aa

b,得,,abab构成以b为斜边的直角三角形,又225,1,91ttabab,由勾股定理,得225911tt,即5920t,解得7t.14.【解析】由已知可得,2211sin(2cos22cos121222+).1

5.【解析】解法一:由已知,得,0,2F设),(yxP,则2222222||||yxyxPFOP3223344223423122222222xxxxxxx252

54233481542322334222xxx)33(x解法二:设sin,cos3P,,0,2F所以222222sin2cos3sincos3||||PFPOcos62cos44

2cos62sin2cos6222令1,1cost,则4624||||222ttPFPO,当46t,.251640162464||||min22PFPO解法三:由

中线定理,得1222222||||2222222PMPMOMPMPFPO设sin,cos3P,,0,22M则22sin22cos3PM(令1

,1cost)236t223cos6cos222t23862324,1,1t所以251432122||||22222PMOMPMPFPO.16.【解析】由已知可得,图象C的周期为(2kkZ),或

一条对称轴为14222x,故4k或324k,所以①错误;存在8,4T,所以②正确;因为图象有一条对称轴为2πx,则(())1212f,关于2πx的对称点为11(,())1212f,故存在,使得C

上的点(())1212f,向右平移11512126后仍在C上,所以③正确;因为114时,()fx在)42(,单调递减,且)42(,19()542,,故114时,()fx在19()542,单调递减也成立,所以④错误.故选②③.三、解答题:共70分.解答应写

出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)记nS为正项数列na的前n项和,已知nnnSaa422.(1)求na的通项公式;(2)记nT为

正项等比数列nb的前n项和,且21ab,283T,若1562nnT,求n的最小值.【命题意图】本题主要考查递推数列、等差数列、等比数列通项与和等基础知识;考查运算求解、推理论证等基本能力;考查分类与整合、化归与转化基本思想;取向数学运算、逻辑推理核心素养.解析:(1)当1n时

,112142Saa,可得21a.···················································1分当2n时,由nnnSaa422①,可得112142nnnSaa

②.····················2分①—②得:121222nnnnaaaa.······················································

···3分整理得0211nnnnaaaa.因为0na,所以221naann,·····················································

···········································5分所以nnan2212.········································

····························6分(2)依题意,设q为nb的公比,421ab,281423213qqbbbT,又0q,所以2q,·················

···························································8分所以12421214nnnT,·························

·······································10分所以42524242nnnnnT,由156425n,得5n,故所求n的最小值为5.·································12分1

8.(12分)某百货公司旗下有甲、乙两家分店.为了调查两家分店的销售情况,现随机抽查了上个年度两家店20天的日销售额(单位:万元),分别得到甲、乙两家分店日销售额的频率分布直方图如下:(1)经计算得到甲店日销售额

的平均数为49,方差为33.87.①估计乙店日销售额的平均数(同一组中的数据用该组区间的中点值作代表);②若公司规定,分店一年(按360天计算)中日销售额不低于58万的天数应不少于90天,结合上图,分析两家分店上个年度是否都有达到这一规定的要求?(2)

如果你是投资决策者,你更愿意在哪家店投资,请你根据所学的统计知识,说明你的理由.【命题意图】本题主要考查平均数、方差、直方图基础知识;考查数据处理、运算求解基本能力;或然与必然的统计概率基本思想;取向数据分析、数学运算核心素养.解法一:(1)①估计算乙店的日销售额平均数为200.1250.32

50.5100.7200.947x乙.·····························4分②日销售额超过58万的天数占比不少于4136090,······························

·············6分甲日销售额不低于58万的概率约为(6058)0.03200.0075200.00250.26,·····································8分乙日销售额不低于58万的概率约为(6058

)0.0125200.005200.0100.325,两者均大于41,两店均有达到这一规定的要求.···········································10分(2)答案不唯一,但需结合数据与统计概率相关知识加以说理,方能

给分.答案一:甲店日销售额平均值略高于乙店,经计算,乙店方差为771,故甲店销售情况比乙店要稳定,所以我选甲店;答案二:甲店日销售额平均值略高于乙店,由频率分布直方图可知,甲店的销售额方差明显低于甲店,故甲店销售情况比乙店要稳定,所以我选甲店;答

案三:虽然甲店日销售额平均值略高于乙店,但乙店日销售额在80万-100万出现的概率比甲店高,故我认为乙店更有潜力,所以我选乙店.············································································

···················12分解法二:(1)①同解法一.················································································

··········4分②日销售额超过58万的天数占比不少于4136090;········································6分由甲店的频率分布直方图可知,若甲店日销售额不低于x万元时的概率不低于41,

则0.250.0075200.00252016058580.033x,···························8分由乙店的频率分布直方图可知,乙店日销售额不低于60万元的概率约为1200.005200

.0100.34,两店均有达到这一规定的要求.··············10分(2)同解法一.·····························································

·····························12分19.(12分)如图,在六棱锥PABCDEF中,底面ABCDEF是边长为4的正六边形,27PAPC.(1)点Q在侧棱PE上,且PB∥平面CFQ,证明:

Q为PE的中点;(2)若25PB,求点E到平面PCD的距离.【命题意图】本题主要考查线面平行、线面垂直、多面体的体积、点面距等基础知识;考查空间想象、运算求解、推理论证等基本能力;考查转化与化归、数形结合等基本思想;取向数学运算、直观想象、逻辑推理等核心

素养.解析:(1)设CFBERI,在正六边形ABCDEF中,易知R为BE中点.·········································································································

··········1分因为PB∥平面CFQ,PB平面PBE,平面PBE平面CFQQR,所以PBQR∥.·························································································3分因为R为

BE中点,所以Q为PE的中点.······················································4分(2)设ACBEOI,连结PO.在正六边形ABCDEF中,易得ACBE,

AOCO.又因为PAPC,所以POAC.······························································5分在正六边形ABCDEF中,4ABBC,所以

23AOCO,2BO.又因为27PAPC,所以4PO.因为25PB,所以222PBBOPO,即POBO.································6分POAC,POBO,BOACO,,BOAC平面ABCDEF

,所以PO平面ABCDEF.········································································8分PO平面ABCDEF,PO平面PA

C,所以平面PAC平面ABCDEF,又因为BE平面ABCDEF,BEAC,平面PAC平面ABCDEFAC,所以BE平面PAC,又因为CDBE∥,所以CD平面PAC,又因为PC平面PAC,所以CDPC,易得74PCDS△.······················

·10分记h为点E到平面PCD的距离,由EPCDPCDE--VV,34CDES△···················11分可得1133PCDCDEShSPO,可得4217h.········

···································12分20.(12分)已知函数2()(2)lnfxaxaxx.(1)讨论()fx的单调性;(2)若()fx有两个零点,求a的取值范围.【命题意图】本题主要考查函数单调性、零点基础

知识;考查运算求解、推理论证基本能力;考查数形结合、分类与整合等基本思想;取向数学运算、逻辑推理等核心素养.解法一:(1)211122(0)xaxfxaxaxxxx.·······································1分①当0a

时,10ax,所以0fx,所以fx在),0(上递减.···········2分②当0a时,由0fx可得1xa,由0fx可得10xa,所以fx在10,a上

递减,在1,a上递增.········································4分(2)①当0a时,由(1)可知,fx在),0(上递减,不可能有两个零点.··································

····························································································5分②当0a时,min11(2)11ln1lnafxfaaaaaa

,令11lngaaa,则2110gaaa,所以ga在0,上递增,而10g,·························

····································································7分当1a时,min0gafx,从而fx没有两个零点.···················

·······8分当01a时,min0gafx,在10,a上取1ex,2211112(2)ln10eeeeeeeaafaa,所以

fx在11,ea上有1个零点;····························································10分在1,a上取311xaa,因为23333331121ln11ln10faaaaaaaa

,所以fx在1,a上有1个零点.综上所述,a的取值范围为0,1.············12分解法二:(1)同解法一

.·····························································································4分(2)方程2(2)ln0axaxx等价于2

2lnxxaxx,所以fx有两个零点等价于22lnxxaxx有两个解,·······························································

····5分令22lnxxGxxx,则222122ln21xxxxxxGxxx22211lnxxxxx,··········7分令1ln

Hxxx,则110Hxx,所以Hx在0,上递增,········································································································

······················8分而10H,所以当01x时,0Hx,0Gx,当1x时,0Hx,0Gx,所以Gx在0,1上递增,在1,上递减.···········10分11G,当0

x时,Gx,当x时,0Gx.若fx有两个零点,则ya与Gx有两个交点,所以a的取值范围是0,1.·········12分解法三:(1)同解法一.····························

·································································4分(2)问题等价于方程2(2)ln0axaxx有两个解,即ln1

2xaxx.令12kxax,lnxxx,则fx有两个零点等价于ykx与yx有两个交点.···························6分因为21lnxxx,由0x可得0ex

,由0x可得ex,所以x在0,e上递增,在e,上递减,1ee,当x时,0x.····································································

·······················8分ykx是斜率为a,过定点1,2A的直线.当ykx与yx相切的时候,设切点00,Pxy,则有00000020ln12

1lnxyxyaxxax,消去a和0y,可得000200ln1ln12xxxxx,即00021ln10xxx,即00ln10xx.··································

······10分令ln1pxxx,显然px是增函数,且10p,于是01x,此时切点1,0P,斜率1a.····················································1

1分所以当ykx与yx有两个交点时,01a,所以a的取值范围是0,1.····································································

···············································12分21.(12分)已知点0,1F,直线:1ly,直线l垂直l于点P,线段PF的垂直平分线交l于点Q.(1

)求点Q的轨迹C的方程;(2)过点,2Ha作C的两条切线,切点分别为,AB,记△HAB的外接圆为G,不论a取何值,试判断以HG为直径的圆是否恒过定点?若是,求出该定点坐标;若不是,请说明理由.【命题意

图】本题主要考查曲线的方程、垂直平分线的性质等基础知识;考查运算求解能力;体现数形结合思想;取向逻辑推理、数学运算和直观想象等核心素养.解析:(1)依题意,得FQPQ,··········································

·····································1分假设Q点的坐标为,xy,则22(1)1xyy,·······································

·····3分化简,得到24xy,所以点Q的轨迹C的方程是24xy.···································4分(2)解法一:假设22112211(,),(,)44AxxBxx,,2Ha,抛物线方程化成214yx,求导,得1

2yx,·············································5分112HAkx,中垂线HA的斜率是12,kxHA中点坐标是2118(,),28xaxAHA的中垂线方程是21118282xxayxx

,······································6分又121142,8xaxx即21128,xax代入上面式子,得111242axxayxx同理可得H

B的中垂线方程是222242axxayxx,·····························7分联立方程,得圆心坐标是23(,1)22aGa.···································

······················8分以HG为直径的圆的方程为23210.22axaxayy····················9分化简整理,得22225120222axaxyyya,即222252224

axxyaya·······················································10分由a的任意性,得2222022240xxyaya

,即201240xyya,解得01xy,·············································11分所以以HG为直径的圆恒过定点0,1.··········

·············································12分解法二:(1)同解法一;·················································································

············4分(2)假设22112211(,),(,)44AxxBxx,,2Ha,抛物线方程化成214yx,求导得12yx,····································

·········5分112HAkx,中垂线HA的斜率是12,kxHA中点坐标是)88,2(211xax,HA的中垂线方程是21118282xxayxx,···································6分又

121142,8xaxx即21128,xax代入上面式子,得111242axxayxx同理可得HB的中垂线方程是222242axxayxx,··························7分联立方程,得圆心坐标23(,

1)22aGa.·························································8分由对称性可知,定点存在且必在y轴上,设为点00,My,则203(,1)22aGMay,0(,2)HMay··············

···························9分则2222200000033(1)(2)222222aaGMHMaayyayyyya22000112022yayy··························

···············10分由a的任意性,得02001102220yyy,解得01y,····································11分所以以

HG为直径的圆恒过定点0,1.····················································12分(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,

则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线1C的极坐标方程为12sin2,将曲线1C绕点O顺时针旋转4得到曲线2C.(1)求曲线2C的极坐标方程和直角坐标方

程;(2)过点11P,的直线l交曲线2C于BA,两点,求PBPA的最小值.【命题意图】本题主要考查极坐标方程、参数方程、直角坐标方程、参数几何意义基础知识;考查推理论证、运算求解等基本能力;考查数形结合、

化归与转化等基本思想;取向数学运算、直观想象、逻辑推理等核心素养.解析:(1)设,M是曲线2C上任意一点,则,M绕点O逆时针旋转4π得到点4π,M·······································

2分因为'M在曲线1C上,所以4π2sin2=1,化简得曲线2C的极坐标方程是12cos2.·················································3分12cos2可得1s

incos2222,将yxsin,cos代入即得曲线2C直角坐标方程122yx.································································5分(2)设

直线l的参数方程为,,sin1cos1tytx(t为参数)···········································6分代入2C直角坐标方程122yx得01cossin22co

s2tt,············7分设点BA,对应的参数分别为21,tt,则2cos121tt,······································8分由参数t的几何意义得2cos121

ttPBPA,···········································9分当且仅当0时,PBPA取得最小值1.··························

························10分23.[选修4—5:不等式选讲](10分)已知函数3)(xaxxf.(1)当2a时,求不等式()1fx≤的解集;(2)[3,3]x,()4fxx≤,求a的取值范围.【命题意图】本题主要考查绝对值不等式基础知识;

考查运算求解基本能力;考查函数与方程、分类与整合、数形结合等基本思想;取向数学运算核心素养.解析:(1)当2a时,5,3()2312,325,2xfxxxxxx≤≤当3x≤时,()51fx≤无解,故不成立;..........................

..........................................1分当32x≤时,()121fxx≤,解得12x≤≤;.................................................3分当2x时,

()51fx≤恒成立,综上所述,x≥-1.................................................5分(2)[3,3]x,34xaxx≤等价于7xa≤,........

.........................................7分即77axa,................................................................................

..............................8分得44a.............................................................

.........................................................10分

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
相关资源
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?