【文档说明】2021人教B版数学必修第三册课时分层作业:7.2.4 第2课时 诱导公式⑤⑥⑦⑧ .docx,共(7)页,92.919 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-338e27e9ea9e82481b1a40951d2a21c9.html
以下为本文档部分文字说明:
课时分层作业(七)诱导公式⑤⑥⑦⑧(建议用时:40分钟)一、选择题1.已知sin(75°+α)=13,则cos(15°-α)的值为()A.-13B.13C.-223D.223B[因为(75°+α)+(15°-α)=90°,所以cos(15°-α)=cos[90°-(75°
+α)]=sin(75°+α)=13.]2.已知sinπ2+α=13,α∈-π2,0,则tanα的值为()A.-22B.22C.-24D.24A[由已知得,cosα=13,又α∈-π2,0,所以sinα=-1-cos2α=-1-19=-223.因此,ta
nα=sinαcosα=-22.]3.已知f(sinx)=cos3x,则f(cos10°)的值为()A.-12B.12C.-32D.32A[f(cos10°)=f(sin80°)=cos240°=cos(180°+60°)=-cos60°=-12.]4.若sin(π+α)+cos
π2+α=-m,则cos3π2-α+2sin(2π-α)的值为()A.-2m3B.2m3C.-3m2D.3m2C[因为sin(π+α)+cosπ2+α=-sinα-sinα=-m,所以sinα=m2.故cos
3π2-α+2sin(2π-α)=-sinα-2sinα=-3sinα=-32m.]5.(多选题)下列与sinθ的值不相等的是()A.sin(π+θ)B.sinπ2-θC.cosπ2-θD.cosπ2+θABD[sin(π+θ)=-s
inθ;sinπ2-θ=cosθ;cosπ2-θ=sinθ;cosπ2+θ=-sinθ.]二、填空题6.化简:sin(-α-7π)·cosα-3π2=________.-sin2α[原式=-sin(7π+α)·c
os3π2-α=-sin(π+α)·-cosπ2-α=sinα·(-sinα)=-sin2α.]7.若sinπ2+θ=35,则cos2θ-sin2θ=________.-725[sinπ2+θ=cosθ=35,从
而sin2θ=1-cos2θ=1625,所以cos2θ-sin2θ=-725.]8.sin2π3-x+sin2π6+x=________.1[因为π3-x+π6+x=π2
,所以sin2π3-x+sin2π6+x=sin2π3-x+cos2π3-x=1.]三、解答题9.已知sinα是方程5x2-7x-6=0的根,α是第三象限角,求sin-α-3π2cos
3π2-αcosπ2-αsinπ2+α·tan2(π-α)的值.[解]方程5x2-7x-6=0的两根为x1=-35,x2=2,由α是第三象限角,得sinα=-35,则cosα=-45,所以sin-α-3π2cos3π2-αcos
π2-αsinπ2+α·tan2(π-α)=cosα(-sinα)sinαcosα·tan2α=-tan2α=-sin2αcos2α=-916.10.已知sin-π2-α·cos
-5π2-α=60169,且π4<α<π2,求sinα与cosα的值.[解]sin-π2-α=-cosα,cos-5π2-α=cos2π+π2+α=-sinα.所以sin
α·cosα=60169,即2sinα·cosα=120169.①又因为sin2α+cos2α=1,②①+②得(sinα+cosα)2=289169,②-①得(sinα-cosα)2=49169.又因为α∈
π4,π2,所以sinα>cosα>0,即sinα+cosα>0,sinα-cosα>0,所以sinα+cosα=1713,③sinα-cosα=713,④③+④得sinα=1213,③-④得cosα=513.11.已知α为锐角,且2tan(π-α)
-3cosπ2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sinα=()A.355B.377C.31010D.13C[由已知得3sinβ-2tanα+5=0,tanα-6si
nβ-1=0.消去sinβ,得tanα=3,所以sinα=3cosα,代入sin2α+cos2α=1,化简得sin2α=910,则sinα=31010(α为锐角).]12.(多选题)下列结论正确的是()A.sin(π+α)=-sinα成立的
条件是角α是锐角B.若cos(nπ-α)=13(n∈Z),则cosα=13C.若α≠kπ2(k∈Z),则tanπ2+α=-1tanαD.△ABC中,sinB+C2=cosA2CD[由诱导公式知α∈R时,sin(π+α)=-sinα,所以
A错误;当n=2k(k∈Z),cos(nπ-α)=cos(-α)=cosα,此时cosα=13,当n=2k+1(k∈Z)时,cos(nπ-α)=cos[(2k+1)π-α]=cos(π-α)=-cosα,此时cosα=-13,所以B错误;若α≠kπ2(k∈Z)
,则tanπ2+α=sinπ2+αcosπ2+α=cosα-sinα=-1tanα,所以C正确;因为在△ABC中,B+C=π-A,所以sinB+C2=sinπ2-A2=cosA2,故D正确.]13.(一题两空)已知角α的终边经过点P(-4,3
),则tanα=________,cosπ2+αsin(-π-α)cos11π2-αsin9π2+α=________.-34-34[因为角α的终边经过点P(-4,3),所以tanα=yx=-34,所以cosπ2+αsin(-π-α)cos
11π2-αsin9π2+α=-sinαsinα-sinαcosα=tanα=-34.]14.(一题两空)已知sin-π2-αcos-7π2+α=1225,且0<α<π
4,则sinα=________,cosα=________.3545[sin-π2-αcos-7π2+α=-cosα·(-sinα)=sinαcosα=1225.因为0<α<π4,所以0<sinα<cosα.又因为sin2α+cos2α=1,
所以sinα=35,cosα=45.]15.已知sinα=255,求tan(α+π)+sin5π2+αcos5π2-α的值.[解]因为sinα=255>0,所以α为第一或第二象限角.tan(α+π)+sin5π2+αcos5π2-α=tanα+cos
αsinα=sinαcosα+cosαsinα=1sinαcosα.①当α为第一象限角时,cosα=1-sin2α=55,原式=1sinαcosα=52.②当α为第二象限角时,cosα=-1-sin2α=-55,原式=1sinαcos
α=-52.综合①②知,原式=52或-52.获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com