专题09“阿氏圆”模型解决几何最值问题 -【题型与技法】中考数学二轮复习金典专题讲练系列(通用版)(原卷版)

DOC
  • 阅读 0 次
  • 下载 0 次
  • 页数 17 页
  • 大小 791.243 KB
  • 2025-03-27 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【管理员店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
专题09“阿氏圆”模型解决几何最值问题 -【题型与技法】中考数学二轮复习金典专题讲练系列(通用版)(原卷版)
可在后台配置第一页与第二页中间广告代码
专题09“阿氏圆”模型解决几何最值问题 -【题型与技法】中考数学二轮复习金典专题讲练系列(通用版)(原卷版)
可在后台配置第二页与第三页中间广告代码
专题09“阿氏圆”模型解决几何最值问题 -【题型与技法】中考数学二轮复习金典专题讲练系列(通用版)(原卷版)
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的4 已有0人购买 付费阅读2.40 元
/ 17
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】专题09“阿氏圆”模型解决几何最值问题 -【题型与技法】中考数学二轮复习金典专题讲练系列(通用版)(原卷版).docx,共(17)页,791.243 KB,由管理员店铺上传

转载请保留链接:https://www.doc5u.com/view-2afc0004d55d5c47910ea0e61b329e7f.html

以下为本文档部分文字说明:

【经典剖析1】如图,在RtABC中,90C=,9AC=,4BC=,以点C为圆心,3为半径做C,分别交AC,BC于D,E两点,点P是C上一个动点,则13PAPB+的最小值为17.在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为

圆时,即通常我们所说的“阿氏圆”问题.【模型来源】“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.ABPO在平

面上,到线段两端距离相等的点,在线段的垂直平分线上,即对于平面内的定点A、B,若平面内有一动点P满足PA:PB=1,则P点轨迹为一条直线(即线段AB的垂直平分线),如果这个比例不为1,P点的轨迹又会是什么呢?两千多年前的阿波罗尼斯在其著作

《平面轨迹》一书中,便已经回答了这个问题。接下来,让我们站在巨人的肩膀上,一起探究PA:PB=k(k≠1)时P点的轨迹。对于平面内的定点A、B,若在平面内有一动点P且P满足PA:PB=k(k≠1),则动点P的轨迹就是一个圆,这个圆被称为阿波罗尼斯圆,简称“阿氏圆”,如图所示:借助画板工具我们

发现,动点P在运动过程中,PA、PB的长度都在变化,但是PA:PB的比值始终保持不变,接下来我们在深入研究一下!若,设,如图所示:由图可以发现在AB上存在点C使得,在AB延长线上存在点D使得,也就是说,当点P与点C、D重合时,符合条件;当点P不与点C、D重合时,对于任意一点P,连接

PA、PB、PC,可得,所以PC为△PAB一条内角平分线,再连接PD,可得,所以PD为△PAB一条外角平分线,所以PC⊥PD,即∠CPD=90º,所以点P的轨迹是以CD为直径的一个圆.当我们遇到平面内一动点到两定点之比为定值且不为1的情况时,可以在过两定点的直线上按定

比确定内分点和外分点,并以之为直径做圆从而确定动点的轨迹.如何具体证明P点的轨迹就是一个完整的圆呢?分别取线段AB的内外分点C、D,再取CD中点O,可得,设,则,由线段位置关系可得AC+BC+BD=AD,则,解得,.又,即,整理得,即,当点P在一个以O为

圆心,r为半径的圆上运动时,如图所示:易证:△BOP∽△POA,,∴对于圆上任意一点P都有.对于任意一个圆,任意一个k的值,我们可以在任意一条直径所在直线上,在同侧适当的位置选取A、B点,则需,就可以构造出上述的A字型相似(详见本专辑的相

似模型).如图1所示,⊙O的半径为R,点A、B都在⊙O外,P为⊙O上一动点,已知R=25OB,连接PA、PB,则当“PA+25PB”的值最小时,P点的位置如何确定?解决办法:如图2,在线段OB上截取OC使OC=25R,则可说明△BPO与△PCO相似,则有25PB=PC。故本题求

“PA+25PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、P、C三点共线时,“PA+PC”值最小。【技巧总结】计算PAkPB+的最小值时,利用两边成比例且夹角相等构造

母子型相似三角形问题:在圆上找一点P使得PAkPB+的值最小,解决步骤具体如下:1.如图,将系数不为1的线段两端点与圆心相连即OP,OB2.计算出这两条线段的长度比OPkOB=3.在OB上取一点C,使得OCkOP=,即构造△POM∽△BOP,则PCkPB=,PCkPB

=4.则=PAkPBPAPCAC++,当A、P、C三点共线时可得最小值【例题1】如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点C为圆心,2为半径作圆C,分别交AC、BC于D、E两点,点P是圆C上一个动点,则12PAPB+的最小值为_________

_.【例题2】如图1,在RT△ABC中,∠ACB=90°,CB=4,CA=6,圆C的半径为2,点P为圆上一动点,连接AP,BP,求①BPAP21+,②BPAP+2,③BPAP+31,④BPAP3+的最小值.【例题3】如图,点C坐标为(2,5),点A的坐标为(7,0),⊙C的半径为10,点B在⊙C

上一动点,ABOB55+的最小值为________.EABCDPMPDCBA【例题4】如图,在平面直角坐标系xoy中,A(6,-1),M(4,4),以M为圆心,22为半径画圆,O为原点,P是⊙M上一动点,则PO+2PA的最小值为_____

___.【例题5】如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为上一动点,求PC+PD的最小值.【例题6】如图,四边形ABCD为边长为4的正方形,⊙B的半径为2,P是⊙B上一动点,则PD+P

C的最小值为;PD+4PC的最小值为.【例题7】如图,已知正方ABCD的边长为6,圆B的半径为3,点P是圆B上的一个动点,则12PDPC−的最大值为_______.ABCDP【例题8】(1)如图1,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,

那么PD+的最小值为,PD﹣的最大值为.(2)如图2,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.图1图2【例题9】如图,抛物线y=﹣x2+

bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣12x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)①在

y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM它的最小值.【例题10】如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0

),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=

,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.【例题11】如图,边长为4的正方形,内切圆记为⊙O,P是⊙O上一动点,则2PA+PB的最小值为_

_______.【例题12】如图,等边△ABC的边长为6,内切圆记为⊙O,P是⊙O上一动点,则2PB+PC的最小值为________.【例题13】如图,在Rt△ABC中,∠ACB=90º,CB=4,CA=6,圆C的半径为2,P为圆C上一动点,连接

AP、BP,则的最小值是.【例题14】如图,的半径为,,MO=2,∠POM=90º,Q为上一动点,则的最小值为.【例题15】如图,在平面直角坐标系中,点A(4,0),B(4,4),点P在半径为2的圆O上运动,则的最小值是.【例题16】如图,在Rt△ABC中

,∠A=30°,AC=8,以C为圆心,4为半径作⊙C.(1)试判断⊙C与AB的位置关系,并说明理由;(2)点F是⊙C上一动点,点D在AC上且CD=2,试说明△FCD∽△ACF;(3)点E是AB边上任意

一点,在(2)的情况下,试求出EF+FA的最小值.【例题17】如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=

﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)在(2)的前提下,y轴上是否存在一点H,使∠AHF=∠AEF?如果存在,求出此时点H的坐标,如果不存在,请说明理由.【例题18】问题提出:如图1,在等边△ABC中,AB=12,⊙C半径为6,

P为圆上一动点,连结AP,BP,求AP+BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB上取点D,使CD=3,则有==,又∵∠PCD=∠BCP,∴△PCD∽

△BCP,∴=,∴PD=BP,∴AP+BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:如图3,矩形ABCD中,BC=7,AB=9,P为矩形内部一点,且PB=3,AP+PC的最小值为.(3)拓展延伸:如图4,扇形COD中,O为圆心,∠COD=120

°,OC=4,OA=2,OB=3,点P是上一点,求2PA+PB的最小值,画出示意图并写出求解过程.【变式1】如图,已知AC=6,BC=8,AB=10,⊙C的半径为4,点D是⊙C上的动点,连接AD,连接AD、BD,则的最

小值为.【变式2】如图,已知菱形ABCD的边长为4,∠B=60°,⊙B的半径为2,P为⊙B上一动点,则的最小值为.【变式3】如图,在平面直角坐标系中,A(2,0)、B(0,2)、C(4,0)、D(3,2),P是△AOB外部的第一象限内一动点,且∠BPA=135º,则2

PD+PC的最小值是.【变式4】如图,点A、B在上,且OA=OB=6,且OA⊥OB,点C是OA的中点,点D在OB上,且OD=4,动点P在上.(1)求2PC+PD的最小值;(2)求2PC+3PD的最小值.【变式5】如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0

),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条

件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E’A+E’B的最小值.【变式6】如图1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP、BP

,求AP+BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB上取点D,使CD=1,则有==,又∵∠PCD=∠BCP,∴△PCD∽△BCP.∴=,∴PD=BP,∴AP+BP=AP+PD.请你完成余下

的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:在“问题提出”的条件不变的情况下,AP+BP的最小值为.(3)拓展延伸:已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,点P是上一点,求2PA+PB

的最小值.获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com

管理员店铺
管理员店铺
管理员店铺
  • 文档 474179
  • 被下载 24
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?