【文档说明】江西省九校2022届高三上学期期中联考数学(文)试题含答案.doc,共(8)页,797.500 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-2a0a6c9edba9289297725a794a491047.html
以下为本文档部分文字说明:
江西省九校2022届高三上学期期中联考文科数学试卷总分:150分考试时间:120分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题(本题共12小题,每小题5分,共60分
。在每小题给出的四个选项中,只有一项是符号题目要求的)1.已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则()UCAB=()A.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}2.命题“22,30xx−”的否定是()A.2
002,30xx−B.22,30xx−C.2002,30xx−D.22,30xx−3.已知复数z满足12i13iz=+−,则复数z对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限4
.设1232,2()log(1),2xxfxxx−=−,则f(f(2))的值为()A.0B.1C.2D.35.已知2log0.2a=,0.22b=,0.20.2c=,则()A.abcB.acbC.cabD.bca6.如图
所示,在ABC中,3CBCD=,2ADAE=,若ABa=,ACb=,则CE=()A.1163ab−B.1263ab−C.13ab−D.1566ab−7.数列na是公差不为零的等差数列,且2371
1220aaa−+=,数列nb是等比数列,且77ba=,则68bb=()A.19B.18C.17D.168.函数()xxyxee−=−的图像大致为()A.B.C.D.9.ABC的内角A,B,C的
对边分别为a,b,c.若()()3abcabcac++−+=,sin2cossinBCA=,则ABC为()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形10.已知函数()cos()0,||2fxx
=+的最小正周期为,其图象关于直线6x=对称.给出下面四个结论:①将()fx的图象向左平移6个单位长度后得到的函数图象关于y轴对称;②点5,012为()fx图象的一个对称中心;③142f=;④()fx在
区间0,3上单调递增.其中正确的结论为()A.①②B.②③C.②④D.①④11.定义12nnppp+++为n个正数12,,nppp的“均倒数”.若已知数列na的前n项的“均倒数”为121n+,又14nnab+=,则12231415111b
bbbbb+++=().A.1314B.1415C.114D.111512.已知函数()xefxmxx=−(e为自然对数的底数),若()0fx在(0,)+上恒成立,则实数m的取值范围是()A.(,2)−B.(,)
e−C.2,4e+D.2,4e−二、填空题(本题共4小题,每小题5分,共20分)13.已知向量,向量()3,1b=−,与b共线,则___________.ba+2=k(6,)ak=14.已知3sin12
5+=,则sin23−=___________.15.已知ABC中,3ACAB==,4BC=,点M是线段AB的中点,则CMCA•=______.16.已知数列na满足:11a=,1122
nnnaa−−=+(2n,nN),则na=___________.三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤)17(10分).已知(1)若p为真命题,求x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.18(12分)
.已知数列{na}是首项1a=1,公差为d的等差数列,数列{nb}是首项1b=2,公比为q的正项等比数列,且公比q等于公差d,3a+6a=32b.(1)求数列{na},{nb}的通项公式;(2)若数列{nc}满足nc=na·nb(nN),求数列{nc}的前n项
和nT.19(12分).已知函数()2sin223sinfxxx=−.(1)求f(x)的最小正周期;(2)若任意0,6x,()fxm恒成立,求m范围.20(12分).在ABC中,,,ABC所对的边分别为,,abc,向量()(),2,cos,c
osmabcnBA=−=,且mn⊥.(1)求角A的大小;(2)若ABC外接圆的半径为2,求ABC面积的最大值..2(02)2(:2)++−aaxaxq,45:2−xxp21(12分).已知函数2()()4xfxeaxbxx=+
−−,曲线()yfx=在点(0,(0))f处切线方程为44yx=+.(1)求,ab的值;(2)讨论()fx的单调性,并求()fx的极大值.22(12分).设函数()2lnxfxeax=−.(Ⅰ)讨论()fx的导函数()fx的零点的个数;(Ⅱ)证明:当0a时()2
2lnfxaaa+.257-217文科数学答案一.选择题123456789101112CCDBBDADAABD12.【详解】()0xefxmxx=−在(0,)+上恒成立,等价于2xemx在(0,)+上恒成立,构造()()20xehxxx=,则()()32xexhxx−=当2x时,(
)0hx;当02x时,()0hx故()hx在()0,2单调递减,在()2,+单调递增()hx的最小值为()224eh=实数m的取值范围是24em.所以选D.二、填空题13.-214.15.16.12nn−三、解答题17.(1){x|1≤x≤4}
;(2)(2,4.【详解】(1)若p为真命题,则x2≤5x﹣4,即x2﹣5x+4≤0,即(x﹣1)(x﹣4)≤0,即1≤x≤4,······································3分所以x的取值范围{x|1≤x≤4}.··················
························4分(2)记A={x|1≤x≤4}.q:x2﹣(a+2)x+2a0(a>2)(2)()0xxa−−故当a>2时,B={x|2<x<a}.········································7
分因为p是q的必要不充分条件,所以BA,所以24aa,所以2<a≤4,·············································9分故实数a的取值范围为(2,4.···································10分18.【详解
】解:(1)由题意3632aab+=,可得211272adbq+=,因为dq=,则2274dd+=,解得2d=或14−,·····················2分因为等比数列nb各项为正项,所以2dq==,则21nan=−,2nnb=;···················
·······················5分(2)因为21nan=−,2nnb=,故(21)2nncn=−,··················6分123123252(21)2nnTn=++++−,①23412123252(23)2(21)2nnnTnn+=+++
+−+−,②··········8分将①-②得:12312222222(21)2nnnTn+−=++++−−即123122222222(21)22nnnTn+−=++++−−−有()112122(21)22(32)2612nnnnTnn+
+−−=−−−=−−−··············11分所以1(23)26nnTn+=−+.········································12分19.【详解】解(1)()2sin223sinfxxx=−=sin2x+3cos2x-3=2sin
(2)33x+−············································3分f(x)的最小正周期为π;·········································4分(2
),22333x+······························6分当232x+=,即12x=时,max()fx=()2312f=−············9分[0,]6x,使()fxm恒成立max()fxm
················11分m23−.··························································12分20.【详解】(1)依题意得:cos(2)cos0aBbcA+−=,则sinc
ossincos2sincosABBACA+=,····································2分∴sin2sincosCCA=,又sin0C,∴1cos2A=,()0,A,故3A=.··············
···························5分(2)法一:由正弦定理得2sin4sinbRBB==,24sin4sin3cCB==−,∴ABC面积60x1231sin43sinsin43sincossin2322SbcABBBBB==−=+
()26sincos23sin3sin231cos2323sin2,6BBBBBB=+=+−=+−·······8分由3A=得:203B,则72666B−−,·······························10分∴1sin2126B
−−,故262B−=,即3B=时,max33S=.··············12分法二:由正弦定理得:2sin23aRA==,由余弦定理2222cosabcbcA=+−,∴22122bcbcbc+=+,当且仅当bc=时取等号,···············
·············8分∴12bc,maxmax1()sin3323Sbc==.······································12分21.【详解】(1)()()24xxeaxbfax=++−−.······························
··1分由已知得()04f=,()04f=.·············································2分故4b=,8ab+=.从而4a=,4b=.·······································4分(2)
由(1)知,()()2414xfxexxx=+−−,()()()14224422xxfxexxxe=+−−=+−.····························6分令()0fx=得,ln2x=−或2x=−.········
····························7分从而当()(),2ln2,x−−−+时,()0fx;当()2,ln2x−−时,()0fx.·······················
·················10分故()fx在(),2−−,()ln2,−+上单调递增,在()2,ln2−−上单调递减.·····11分当2x=−时,函数()fx取得极大值,极大值为()()2241fe−−=−.···
········12分22.【详解】(Ⅰ)()fx的定义域为()0+,,()2()=20xafxexx−.············1分当0a时,()0fx,()fx没有零点;····················
················2分当0a时,因为2xe单调递增,ax−单调递增,所以()fx在()0+,单调递增.··3分又()0fa,当b满足04ab且14b时,()0fb,·······················4分故当0a时,()
fx存在唯一零点.······································5分(Ⅱ)由(Ⅰ),可设()fx在()0+,的唯一零点为0x,当()00xx,时,()0fx;当()0+xx,时,()0fx.故()fx在()00x,单调递减,在()0+x
,单调递增,··7分所以当0xx=时,()fx取得最小值,最小值为0()fx.························8分由于0202=0xaex−,所以00022()=2ln2ln2afxaxaaaxaa+++.·
··············11分故当0a时,2()2lnfxaaa+.·········································12分