【文档说明】《高考物理一轮复习考点全攻关》专题(72)动力学 动量和能量观点在电学中的应用(原卷版).docx,共(6)页,183.983 KB,由管理员店铺上传
转载请保留链接:https://www.doc5u.com/view-2656e0aaba9546fddfd5c6ef89a3727f.html
以下为本文档部分文字说明:
12021年高考物理一轮复习考点全攻关专题(72)动力学动量和能量观点在电学中的应用(原卷版)专题解读1.本专题是力学三大观点在电学中的综合应用,高考对本专题将作为计算题压轴题的形式命题.2.学好本专题,可以帮助同学们应用力学三大观点分析带电粒子在电场和磁场中的碰撞问题、电磁感应中的动量和能量问
题,提高分析和解决综合问题的能力.3.用到的知识、规律和方法有:电场的性质、磁场对电荷的作用、电磁感应的相关知识以及力学三大观点.命题热点一:电磁感应中动量和能量观点的应用1.应用动量定理可以由动量变化来求解变力的冲量.如在导体棒做非匀变速运动的问题中,应用动量定理可
以解决牛顿运动定律不易解答的问题.2.在相互平行的水平轨道间的双导体棒做切割磁感线运动时,由于这两根导体棒所受的安培力等大反向,若不受其他外力,两导体棒的总动量守恒,解决此类问题往往要应用动量守恒定律.类型1动量定理和功能关系的应用例1(2019·福建龙岩市5月模拟)如图1为电磁驱动与阻
尼模型,在水平面上有两根足够长的平行轨道PQ和MN,左端接有阻值为R的定值电阻,其间有垂直轨道平面的磁感应强度为B的匀强磁场,两轨道间距及磁场宽度均为L.质量为m的金属棒ab静置于导轨上,当磁场沿轨道向右运动的速度为v时,棒ab恰好滑动.棒运
动过程始终在磁场范围内,并与轨道垂直且接触良好,轨道和棒电阻均不计,最大静摩擦力等于滑动摩擦力.图1(1)判断棒ab刚要滑动时棒中的感应电流方向,并求此时棒所受的摩擦力Ff大小;(2)若磁场不动,将棒ab以
水平初速度2v运动,经过时间t=mRB2L2停止运动,求棒ab运动位移x及回路中产生的焦耳热Q.变式1(多选)如图2所示,CD、EF是两条水平放置的电阻可忽略的平行光滑导轨,导轨固定不动,间距为L,在水平导轨的左侧存在磁感应强度
方向垂直导轨平面向上的匀强磁场,磁感应强度大小为B.导轨的右端接有一电阻R,左端与一弯曲的光滑轨道平滑连接.将一阻值也为R、质量为m的导体棒从弯曲轨道上h高处由静止释放,导体棒最终恰好停在磁场的右边界处.已知导体棒与水平导轨垂直且接触良好,则下列说法中正确的是()2
图2A.电阻R的最大电流为BL2gh2RB.电阻R中产生的焦耳热为mghC.磁场左右边界的长度d为mR2ghB2L2D.流过电阻R的电荷量为m2ghBL类型2动量守恒定律和功能关系的应用1.问题特点对于双导体棒运动的问题,通常是两棒与导轨构成一个闭合回路,
当其中一棒在外力作用下获得一定速度时必然在磁场中切割磁感线,在该闭合回路中形成一定的感应电流;另一根导体棒在磁场中在安培力的作用下开始运动,一旦运动起来也将切割磁感线产生一定的感应电动势,对原来电流的变化起阻碍作用.2.方法技巧解决此类问题时通常将两棒视为一个整体,
于是相互作用的安培力是系统的内力,这个变力将不影响整体的动量守恒.因此解题的突破口是巧妙选择系统,运用动量守恒(动量定理)和功能关系求解.例2(2019·河北衡水中学高考模拟)如图3所示,MN、PQ两平行光滑水平导轨分别与半径r=0.5m的相同竖直半圆导轨在N、Q端平滑连接
,M、P端连接定值电阻R,质量M=2kg的cd绝缘杆垂直静止在水平导轨上,在其右侧至N、Q端的区域内充满竖直向上的匀强磁场.现有质量m=1kg的ab金属杆以初速度v0=12m/s水平向右与cd绝缘杆发生正碰后,进入磁场并最终
未滑出,cd绝缘杆则恰好能通过半圆导轨最高点,不计其他电阻和摩擦,ab金属杆始终与导轨垂直且接触良好,取g=10m/s2,求:图3(1)cd绝缘杆通过半圆导轨最高点时的速度大小v;(2)电阻R产生的焦耳热Q.变式2(2019·山东泰
安市第二轮复习质量检测)如图4所示,间距为L的足够长光滑平行金属导轨固定在同一水平面内,虚线MN右侧区域存在磁感应强度为B、方向竖直向下的匀强磁场.质量均为m、长度均为L、电阻均为R的导体棒a、b,垂直
导轨放置且保持与导轨接触良好.开始导体棒b静止于与MN相距为x0处,导体棒a以水平速度v0从MN处进入磁场.不计导轨电阻,忽略因电流变化产生的电磁辐射,运动过程中导体棒a、b没有发生碰撞.求:3图4(1)导体棒b中产生的内能;(2)导体棒a、b间的最小距离.命题热点二:电场和磁场中的动量和
能量问题例3如图5所示,轨道ABCDP位于竖直平面内,其中圆弧段CD与水平段AC及倾斜段DP分别相切于C点和D点,水平段BC粗糙,其余都光滑,DP段与水平面的夹角θ=37°,D、C两点的高度差h=0.1m,整个轨道绝缘,处于方向水平向左、电场强度大小未知的匀强电场中,一个质量m1=0.
4kg、带正电、电荷量未知的小物块Ⅰ在A点由静止释放,经过时间t=1s,与静止在B点的不带电、质量m2=0.6kg的小物块Ⅱ碰撞并粘在一起后,在BC段上做匀速直线运动,到达倾斜段DP上某位置,物块Ⅰ和Ⅱ与轨道BC段的动摩擦因数均为μ=0.2,g=10m/s2,sin37°=0.
6,cos37°=0.8.求:图5(1)物块Ⅰ和Ⅱ在BC段上做匀速直线运动的速度大小;(2)物块Ⅰ和Ⅱ第一次经过圆弧段C点时,物块Ⅰ和Ⅱ对轨道压力的大小.变式3如图6所示,光滑绝缘的半圆形轨道ACD,固定在竖直面内,轨道处在垂直于轨道平面向
里的匀强磁场中,半圆的直径AD水平,半径为R,匀强磁场的磁感应强度为B,在A端由静止释放一个带正电荷、质量为m的金属小球甲,结果小球甲连续两次通过轨道最低点C时,对轨道的压力差为ΔF,小球运动过程中始终不脱离轨道,重力加速度为g.求:图6(
1)小球甲经过轨道最低点C时的速度大小;(2)小球甲所带的电荷量;(3)若在半圆形轨道的最低点C放一个与小球甲完全相同的不带电的金属小球乙,让小球甲仍从轨道的A端由静止释放,则甲球与乙球发生弹性碰撞后的一瞬
间,乙球对轨道的压力.(不计两球间静电力的作用)课时精练:一、双基巩固练:41.如图1所示,正方形区域ABCD中有垂直于纸面向里的匀强磁场,M、N分别为AB、AD边的中点,一带正电的粒子(不计重力)以某一速度从M点平行于AD边垂直磁场方向射入,并恰好从A点
射出.现仅将磁场的磁感应强度大小变为原来的12,下列判断正确的是()图1A.粒子将从D点射出磁场B.粒子在磁场中运动的时间将变为原来的2倍C.磁场的磁感应强度变化前后,粒子在磁场中运动过程的动量变化大小之比为2∶1D.若其他条件不变,继
续减小磁场的磁感应强度,粒子可能从C点射出2.光滑绝缘的水平桌面上方存在垂直桌面向下的匀强磁场,磁感应强度大小为B,俯视图如图2所示.一个质量为2m、电荷量为q的带正电小球甲静止在桌面上,另一个大小相同、质量为m的不带电小球
乙,以速度v0沿两球心连线向带电小球甲运动,并发生弹性碰撞.假设碰撞后两小球的带电荷量相同,忽略两小球间静电力的作用.则下列关于甲、乙两小球碰后在磁场中的运动轨迹,说法正确的是()图2A.甲、乙两小球运动轨迹是外切圆,半径之比为2∶1B.甲、乙两小球运动轨迹是外切圆,半径之比为4∶1C.
甲、乙两小球运动轨迹是内切圆,半径之比为2∶1D.甲、乙两小球运动轨迹是内切圆,半径之比为4∶13.(多选)(2019·云南第二次统一检测)如图3所示,倾角为θ=37°的足够长的平行金属导轨固定在水平面上,
两导体棒ab、cd垂直于导轨放置,空间存在垂直导轨平面向上的匀强磁场,磁感应强度大小为B.现给导体棒ab沿导轨平面向下的初速度v0使其沿导轨向下运动,已知两导体棒质量均为m,电阻相等,两导体棒与导轨之间的动摩擦因数均为μ
=0.75,导轨电阻忽略不计,sin37°=0.6,cos37°=0.8.从ab开始运动到两棒相对静止的整个运动过程中两导体棒始终与导轨保持良好的接触,下列说法正确的是()5图3A.导体棒cd中产生的焦耳热为14mv02B.导体棒cd中产生的焦耳热为18m
v02C.当导体棒cd的速度为14v0时,导体棒ab的速度为12v0D.当导体棒ab的速度为34v0时,导体棒cd的速度为14v04.如图4所示,光滑绝缘水平面上方分布着场强大小为E、方向水平向右的匀强电场.质量为3m
、电荷量为+q的球A由静止开始运动,与相距为L、质量为m的不带电小球B发生对心碰撞,碰撞时间极短,碰撞后作为一个整体继续向右运动.两球均可视为质点,求:图4(1)两球发生碰撞前A球的速度大小;(2)A、B碰撞过程中系统损失的机械能;(3)A、B碰撞过程中B球受到的冲量大小.5.如图5所示,
质量M=1kg的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd和ef两个光滑半圆形导轨,c与e端由导线连接,一质量m=1kg的导体棒自ce端的正上方h=2m处平行ce由静止下落,并恰好从ce端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运
动过程中与导轨接触良好.已知磁场的磁感应强度B=0.5T,导轨的间距与导体棒的长度均为L=0.5m,导轨的半径r=0.5m,导体棒的电阻R=1Ω,其余电阻均不计,重力加速度g=10m/s2,不计空气阻力.图5(1)求导体棒刚进入凹槽时的速度大小;(2)求导体棒从开始下
落到最终静止的过程中系统产生的热量;(3)若导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16J,求导体棒第一次通过最低点6时回路中的电功率.