【文档说明】辽宁省辽西联合校2023-2024学年高二上学期期中考试+数学+PDF版含答案.pdf,共(14)页,4.190 MB,由管理员店铺上传
转载请保留链接:https://www.doc5u.com/view-22a728f9ce20465a88908bb94131f6dd.html
以下为本文档部分文字说明:
{#{QQABSYQQgggIABIAAQhCQw0QCAAQkAECAAoOwEAEIAABwBNABAA=}#}{#{QQABSYQQgggIABIAAQhCQw0QCAAQkAECAAoOwEAEIAABw
BNABAA=}#}高二期中考试--数学答案第1页,共11页2023-2024学年度上学期辽西联合校高二期中考试题(数学参考答案,提示及评分细则)1.C【详解】设直线倾斜角为,则直线的斜率tan3k.0180Q,120,
故选:C.2.A【详解】解:将直线6430xy化为33202xy,所以两平行直线3210xy和6430xy间的距离223151322632d,故选:A.3.D【详解】圆2234xy的圆心为0,3,直线l与直线10xy
垂直,因为直线10xy的斜率为1,所以1lk,所以直线l的方程是:3yx,即30xy故选:D4.A【详解】当1m时,两直线方程分别为240xy和220xy-+=,则两直线平行;当直线240mxy与直线120xmy
平行时,有(1)2mm,即220mm,解得2m或1m,其中2m时两直线重合,舍去,故1m.“1m”是“直线240mxy与直线120xmy平行”的充分必要条件.故选:A5.B【详解】点M在线段OA上,且2OMMA,N为BC中点,23O
MOA,111()222ONOBOCOBOC,112211223322MNONOMOBOCOAabc.{#{QQABSYQQg
ggIABIAAQhCQw0QCAAQkAECAAoOwEAEIAABwBNABAA=}#}高二期中考试--数学答案第2页,共11页故选:B.6.A【分析】根据向量共线,共面的性质逐一分析每个选项.【详解】对于①,若向量,ab共线,则
向量,ab所在的直线平行,也可能共线,故①错误;对于②,由于向量可以平移,两个向量一定共面,故②错误;对于③,任意两个向量自然是两两共面,三个向量则不一定共面,例如空间直角坐标系,,xyz轴所在的向量两两共面,但是显然,,xyz轴不共面
,故③错误;对于④,若,ab共线时,显然,,abc共面,于是xaybzc只能表示和,,abc共面的向量,对于空间中的任意向量p则不一定成立,故④错误.于是四个选项都是错的.故选
:A7.B【详解】因为椭圆上的点到焦点的距离的最大值为9,最小值为1.所以+=9=1acac,解得=5=4ac.则1212210,28PFPFaFFc由余弦定理可知22222121212121212121221cos222PFPFPFP
FFFPFPFFFFPFPFPFPFPF,代入化简可得12=12PFPF,则12121213sin12331222PFFPFPFSFPF.故选:B.8.C【详
解】{#{QQABSYQQgggIABIAAQhCQw0QCAAQkAECAAoOwEAEIAABwBNABAA=}#}高二期中考试--数学答案第3页,共11页直线10kxyk恒过定点1,1A,且12MAk,32NAk,由图可知,12k
或32k.故选:C.9.BCD【详解】解:因为1,1,0a,1,0,1b,所以2,1,1ab,所以2222116ab,故A错误;因为21,1,2ab,=1,3,2bc
,所以26abbc,故B正确;因为5=4,1,5ab,所以5=421351=0abc,故C正确;因为=3,3,0bcrr,1,1,0a,所以3bcarrr,所以
//abcrrr,故D正确.故选:BCD10.AC【详解】解:对于A选项,当x=0时,y=3,所以直线过定点(0,3),故A选项正确;对于B选项,圆C的圆心为(1,4),到直线4x-3y+3=0的距离为|41
23|5=1,故B选项错误;对于C选项,圆C1的圆心为(-1,0),半径r1=1;圆C2的圆心为(2,4),半径r2=4,圆心距为2234=5=r1+r2,所以两圆外切,故恰有三条公切线,故C正确
;对于D选项,由2222440,2120,xyxyxyx两式相减并化简得x-2y+6=0,故D选项错误.故选:AC.11.ABD【详解】圆心0,0C到直线l的距离222rdab,若点,Aab在圆C上,则2
22abr,所以222=rdrab,则直线l与圆C相切,故A正确;若点,Aab在圆C内,则222abr,所以222>rdrab,则直线l与圆C相离,故B正确;若点,Aab在圆C外,则222abr,所以222<rdrab,则直线l与圆C相交,故C错误;若点,Aa
b在直线l上,则2220abr即222=abr,所以222=rdrab,直线l与圆C相切,故D正确.{#{QQABSYQQgggIABIAAQhCQw0QCAAQkAECAAoOwEAEIAABwBNABAA=}#}高二期中
考试--数学答案第4页,共11页故选:ABD.12.ABD【详解】在选项A中,∵1111ACBD,111ACBB,1111BDBBB,且111,BDBB平面11BBD,∴11AC平面11BBD,1BD平面11BBD,∴111ACBD
,同理,11DCBD,∵1111ACDCC,且111,ACDC平面11ACD,∴直线1BD平面11ACD,故A正确;在选项B中,∵11//ADBC,1AD平面11ACD,1BC平面11ACD,∴1//BC平面11ACD,∵点P在线段1BC上
运动,∴P到平面11ACD的距离为定值,又11ACD的面积是定值,∴三棱锥11PACD的体积为定值,故B正确;在选项C中,∵11//ADBC,∴异面直线AP与1AD所成角为直线AP与直线1BC的夹角.易知1ABCV为等边三角形,当P为1BC的中点时,1APBC
;当P与点1B或C重合时,直线AP与直线1BC的夹角为π3.故异面直线AP与1AD所成角的取值范围是ππ,32,故C错误;在选项D中,以D为原点,DA为x轴,DC为y轴,1DD为z轴,建立空间直角坐标系,如图,{#{QQAB
SYQQgggIABIAAQhCQw0QCAAQkAECAAoOwEAEIAABwBNABAA=}#}高二期中考试--数学答案第5页,共11页设正方体1111ABCDABCD的棱长为1,则,1,Paa,10
,1,1C,1,1,0B,10,0,1D,所以1,0,1CPaa,11,1,1DB.由A选项正确:可知11,1,1DB是平面11ACD的一个法向量,∴直线1CP与平面11AC
D所成角的正弦值为:112221111(1)3113222CPDBCPDBaaa,∴当12a时,直线1CP与平面11ACD所成角的正弦值的最大值为63,故D正确.故选:ABD13.2【详解】∵点0,1,1A和点
1,0,1B,∴点A和点B间的距离是2220110112AB.故答案为:2.14.1【详解】圆22111xy的圆心坐标为1,1,半径1r,所以圆22111xy的直径为2,因为直线20x
ya被圆22111xy截得的弦长为2,所以直线过圆心1,1,故2110a,即1a.故答案为:1.15.22【详解】令椭圆22221(0)xyabab半焦距为c,因PFx轴,则由22221xcxyab
得2||bya,即2||bPFa,{#{QQABSYQQgggIABIAAQhCQw0QCAAQkAECAAoOwEAEIAABwBNABAA=}#}高二期中考试--数学答案第6页,共11页因//OPAB(O为原点,A为右顶点,B为上顶点),则OPFABO,即有
||||||||PFOFOBOA,因此,2bcaba,整理得:bc,则2ac,所以椭圆的离心率为22e.故答案为:2216.(1,1]{2}【详解】曲线21xy,即221(0)xyx,表示以原点(0,0)O为圆心、1为
半径的半圆(位于y轴及右侧的部分),如图,当直线经过点(0,1)A时,1b=-;当直线经过点(0,1)C时,1b;当直线和圆相切时,由圆心到直线的距离等于半径可得0012b,求得2b(舍去),或2b,观察图象,得当直线yxb与曲线21xy恰有一个公共点,实数b的取值
范围为(1,1]{2}.故答案为:(1,1]{2}17.(1)1010;(2)52k或=2k.【详解】(1)由题设(1,1,0)a,(1,0,2)b,...........................................................
...........2分所以110cos<,>===10||||2×5ababab.............................................................
........................5分.(2)由+=(1,,2)kabkk,2=(+2,,4)kabkk,而+2kabkab,所以22(+)(2)=(1)(+2)+8=2+10=(2+5)(2)=0
kabkabkkkkkkk,.............................8分可得52k或=2k.......................................................................
.............................................10分18.(1)222325xy(2)3x或125560xy{#{QQABSYQQgggIABIAAQhCQw0QCAAQkA
ECAAoOwEAEIAABwBNABAA=}#}高二期中考试--数学答案第7页,共11页【详解】(1)解:设圆C的标准方程为2220xaybrr,则有22222222332350abrabrab
,...............................................................................................2分解得22325abr
,.......................................................................................................................5分所以圆C的标准方程为2223
25xy;.................................................................6分(2)解:由(1)得圆C的圆心为2,3,半径为5,当直线斜率不存在时,直线方程为3x,...
....................................................................7分圆心2,3到直线3x的距离等于5,与圆C相切,当直线得斜率存在时,设直线方程为43ykx,即340kxyk,........
........8分则圆心到直线的距离2233451kkdk,....................................................................10分解得1
25k,...................................................................................................
.........................11分故切线方程为12364055xy,即125560xy,综上所述,过点3,4B的圆C的切线方程为3x或125560xy..........
...............12分19.(1)225(2)22【详解】(1)因为四边形ABCD为菱形,所以ACBD,又OP面ABCD,故以OA为x轴,OB为y轴,OP为z轴建立如图所示的空间直角坐标系Oxyz,如图,.
....................................................................................................................1分因为4OA,3OB,4OP,且M为PC中点
,则(4,0,0)A,(0,3,0)B,(0,3,0)D,(0,0,4)P,(4,0,0)C,(2,0,2)M,.........................2分故(0,3,4)PB,(2,3,
2)BM,(0,6,0)BD,{#{QQABSYQQgggIABIAAQhCQw0QCAAQkAECAAoOwEAEIAABwBNABAA=}#}高二期中考试--数学答案第8页,共11页设
面BDM的法向量为,,nxyz,则232060nBMxyznBDy,令1x,则0y,1z,故1,0,1n,...............................................
.................................4分所以422cos525nPBnPBnPB,...................................
........................................5分故直线PB与平面BDM所成角的正弦值为225;..................................................
..............6分(2)由(1)可知(6,0,2)AM,面BDM的一个法向量为1,0,1n,.....................8分所以点A到平面BDM的距离4222nAMdn,..............
.....................................11分故点A到平面BDM的距离为22.....................................................
.................................12分20.(1)2214xy;(2)1m.【详解】解:(1)由题意可得2222232abcca,......................
...........................................2分解得:2a,1b,..........................................................................
........................................3分椭圆C的方程为2214xy;......................................................................................
..........4分(2)设11,Axy,22,.Bxy联立221244yxmxy,得222220xmxm,..............................
........................................................................6分122xxm,21222xxm,......................................
...............................................7分22212514882ABkxxmm2525m,...............................................................
.........................................10分解得1m.................................................................................................
..........................12分21.(1)证明见解析{#{QQABSYQQgggIABIAAQhCQw0QCAAQkAECAAoOwEAEIAABwBNABAA=}#}高二期中
考试--数学答案第9页,共11页(2)63(3)存在,13【详解】(1)PAPD,O为AD的中点,POAD,侧面PAD底面ABCD,侧面PAD底面ABCDAD,PO平面PAD,PO平面ABCD;................
.........................................................2分(2)底面ABCD为直角梯形,其中BCAD∥,ABAD,222ADABBC,OCAD,又PO平面ABCD,以
O为原点,OC所在直线为x轴,OD所在直线为y轴,OP所在直线为z轴,建立空间直角坐标系,.......................................................................
.........................................................................3分1,0,0,0,1,0,0,0,1CDP.............................................
.........................................................4分易得平面PAD的法向量1,0,0m,,1,0,1,0,1,1PCPD,设平面PCD的法向量,,nxyz,则00nPCxznP
Dyz,取1x,得1,1,1n,...........6分设二面角CPDA夹角为,则1cos3mnmn,则21613sin3,二面角CPDA
的正弦值为63;........................................................................................................
.............................8分(3)设线段AD上存在0,,0,1,1Qmm,使得它到平面PCD的距离为32,0,,1PQm,Q到平面PCD的距离1323PQnmdn,....
...........................................................10分解得12m或52m(舍去),......................
............................................................................11分则10,,02Q,则112332AQQD.............
...............................................................................12分{#{QQABSYQQgggIABIAAQhCQw
0QCAAQkAECAAoOwEAEIAABwBNABAA=}#}高二期中考试--数学答案第10页,共11页22.(1)22143xy(2)证明见解析【详解】(1)由圆F:22(1)16xy可得圆心F(1,0),半径r=4,点E1,
0在圆F内,圆H内切于圆F,42HEHFEF,.................2分点H的轨迹C为椭圆,设其方程为22221(0)xyabab,则24a,=1c,223bac,.............................
........................................................3分轨迹C的方程为22143xy;..........................
.......................................................................4分(2)设00,Mxy,且在x轴的上方时,若MFAB,不妨取31,2M,满足曲线C的方程22143xy,则A
M方程为122yx,则4,3N,此时45NFB,又90MFB,故2MFBNFB;..................................................6分若MF不垂直于AB,设NFB
,MFB,则由00,Mxy,1,0F得00tan1MFykx,.............................................................7分又直线AM的方程为:0022yyxx
,联立4x可得:0064,2yNx,故0000622tan32NFyxykx,.......................................................
...................................8分则00002222000044222tantan21tan24212yyxxxyyx,...........
..................................9分又22003412xy,则0000022000004242tan2tan4121234yxyxyxxxxx,..................
.....10分又π0,2,0,π,故2即2MFBNFB;....................................11分当点M在x轴的下方时,根据对称性,显然也满足2MFBNFB;{#{QQABSYQQgg
gIABIAAQhCQw0QCAAQkAECAAoOwEAEIAABwBNABAA=}#}高二期中考试--数学答案第11页,共11页综上:2MFBNFB得证....................................................
...................................12分{#{QQABSYQQgggIABIAAQhCQw0QCAAQkAECAAoOwEAEIAABwBNABAA=}#}获得更多资源请扫码加入享学资源网
微信公众号www.xiangxue100.com